Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 231(Pt 1): 115984, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37156354

RESUMO

In the quest of improving the photocatalytic efficiency of photocatalysts, the combination of two and more semiconductors recently has garnered significant attention among scientists in the field. The doping of conductive metals is also an effective pathway to improve photocatalytic performance by avoiding electron/hole pair recombination and enhancing photon energy absorption. This work presented a design and fabrication of porphyrin@g-C3N4/Ag nanocomposite using acid-base neutralization-induced self-assembly approach from monomeric porphyrin and g-C3N4/Ag material. g-C3N4/Ag material was synthesized by a green reductant of Cleistocalyx operculatus leaf extract. Electron scanning microscopy (SEM), X-ray diffraction (XRD), FT-IR spectroscopy, and UV-vis spectrometer were utilized to analyse the properties of the prepared materials. The prepared porphyrin@g-C3N4/Ag nanocomposite showed well integration of porphyrin nanostructures on the g-C3N4/Ag's surface, in which porphyrin nanofiber was of the diameter in nanoscales and the length of several micrometers, and Ag NPs had an average particle size of less than 20 nm. The photocatalytic behavior of the resultant nanocomposite was tested for the degradation of Rhodamine B dye, which exhibited a remarkable RhB photodegrading percentage. The possible mechanism for photocatalysis of the porphyrin@g-C3N4/Ag nanocomposite toward Rhodamine B dye was also proposed and discussed.


Assuntos
Nanocompostos , Porfirinas , Espectroscopia de Infravermelho com Transformada de Fourier , Corantes , Elétrons
2.
Chemosphere ; 306: 135474, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35760139

RESUMO

Green synthesis has emerged as a sustainable approach for the fabrication of nanomaterials in the last few decades. Leaf extracts have been considered low-cost and highly efficient reactants for the synthesis of nanoparticles. In this study, an aqueous extract of Cleistocalyx operculatus leaves was employed as a reductant to synthesize Ag/TiO2 nanocomposites. The morphology, structure, and interface interaction of the Ag/TiO2 nanocomposites were investigated by (i) X-ray diffraction (XRD) to determine the crystallinity, (ii) scanning electron microscopy (SEM) to determine the morphologies, (iii) energy dispersive X-ray spectroscopy (EDX) to determine the elemental composition and distribution, and (iv) diffuse reflectance spectroscopy (DRS) to understand the optical properties. The results showed that Ag nanoparticles (AgNPs) with particle sizes of 20-40 nm homogeneously covered the surface of the TiO2 nanoparticles. The green-synthesized Ag/TiO2 nanocomposite also exhibited an excellent photodegradation ability for Rhodamine B with a removal percentage up to 91.4% after 180 min of photocatalytic reaction.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Syzygium , Catálise , Corantes , Nanopartículas Metálicas/química , Nanocompostos/química , Extratos Vegetais/química , Prata/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA