Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(15): e2301054120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011213

RESUMO

The establishment of beneficial interactions with microbes has helped plants to modulate root branching plasticity in response to environmental cues. However, how the plant microbiota harmonizes with plant roots to control their branching is unknown. Here, we show that the plant microbiota influences root branching in the model plant Arabidopsis thaliana. We define that the microbiota's ability to control some stages in root branching can be independent of the phytohormone auxin that directs lateral root development under axenic conditions. In addition, we revealed a microbiota-driven mechanism controlling lateral root development that requires the induction of ethylene response pathways. We show that the microbial effects on root branching can be relevant for plant responses to environmental stresses. Thus, we discovered a microbiota-driven regulatory pathway controlling root branching plasticity that could contribute to plant adaptation to different ecosystems.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Plant Physiol ; 195(1): 762-784, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38146839

RESUMO

Ethylene is a volatile plant hormone that regulates many developmental processes and responses toward (a)biotic stress. Studies have shown that high levels of ethylene repress vegetative growth in many important crops, including tomato (Solanum lycopersicum), possibly by inhibiting photosynthesis. We investigated the temporal effects of ethylene on young tomato plants using an automated ethylene gassing system to monitor the physiological, biochemical, and molecular responses through time course RNA-seq of a photosynthetically active source leaf. We found that ethylene evokes a dose-dependent inhibition of photosynthesis, which can be characterized by 3 temporally distinct phases. The earliest ethylene responses that marked the first phase and occurred a few hours after the start of the treatment were leaf epinasty and a decline in stomatal conductance, which led to lower light perception and CO2 uptake, respectively, resulting in a rapid decline of soluble sugar levels (glucose, fructose). The second phase of the ethylene effect was marked by low carbohydrate availability, which modulated plant energy metabolism to adapt by using alternative substrates (lipids and proteins) to fuel the TCA cycle. Long-term continuous exposure to ethylene led to the third phase, characterized by starch and chlorophyll breakdown, which further inhibited photosynthesis, leading to premature leaf senescence. To reveal early (3 h) ethylene-dependent regulators of photosynthesis, we performed a ChIP-seq experiment using anti-ETHYLENE INSENSITIVE 3-like 1 (EIL1) antibodies and found several candidate transcriptional regulators. Collectively, our study revealed a temporal sequence of events that led to the inhibition of photosynthesis by ethylene and identified potential transcriptional regulators responsible for this regulation.


Assuntos
Etilenos , Regulação da Expressão Gênica de Plantas , Fotossíntese , Folhas de Planta , Solanum lycopersicum , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia , Fotossíntese/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Clorofila/metabolismo
3.
J Exp Bot ; 75(3): 1081-1097, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37910663

RESUMO

Waterlogging leads to hypoxic conditions in the root zone that subsequently cause systemic adaptive responses in the shoot, including leaf epinasty. Waterlogging-induced epinasty in tomato has long been ascribed to the coordinated action of ethylene and auxins. However, other hormonal signals have largely been neglected, despite evidence of their importance in leaf posture control. To cover a large group of growth regulators, we performed a tissue-specific and time-dependent hormonomics analysis. This revealed that multiple hormones are differentially affected throughout a 48 h waterlogging treatment, and that leaf age determines hormone homeostasis and modulates their changes during waterlogging. In addition, we distinguished early hormonal signals that contribute to fast responses to oxygen deprivation from those that potentially sustain the waterlogging response. We found that abscisic acid (ABA) levels peak in petioles within the first 12 h of the treatment, while its precursors only increase much later, suggesting that ABA transport is altered. At the same time, cytokinins (CKs) and their derivatives drastically decline during waterlogging in leaves of all ages. This drop in CKs possibly releases the inhibition of ethylene- and auxin-mediated cell elongation to establish epinastic bending. Auxins themselves rise substantially in the petiole of mature leaves, but mostly after 48 h of root hypoxia. Based on our hormone profiling, we propose that ethylene and ABA might act synergistically as an early signal to induce epinasty, while the balance of indole-3-acetic acid and CKs in the petiole ultimately regulates differential growth.


Assuntos
Solanum lycopersicum , Etilenos/farmacologia , Reguladores de Crescimento de Plantas/fisiologia , Ácidos Indolacéticos/farmacologia , Ácido Abscísico , Citocininas , Folhas de Planta , Hormônios
4.
Environ Exp Bot ; 214: 105456, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37780400

RESUMO

All land plants modulate their growth and physiology through intricate signaling cascades. The majority of these are at least modulated-and often triggered-by phytohormones. Over the past decade, it has become apparent that some phytohormones have an evolutionary origin that runs deeper than plant terrestrialization-many emerged in the streptophyte algal progenitors of land plants. Ethylene is such a case. Here we synthesize the current knowledge on the evolution of the phytohormone ethylene and speculate about its deeply conserved role in adjusting stress responses of streptophytes for more than half a billion years of evolution.

5.
New Phytol ; 236(6): 2103-2114, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36151927

RESUMO

In seed plants, 1-aminocyclopropane-1-carboxylic acid (ACC) is the precursor of the plant hormone ethylene but also has ethylene-independent signaling roles. Nonseed plants produce ACC but do not efficiently convert it to ethylene. In Arabidopsis thaliana, ACC is transported by amino acid transporters, LYSINE HISTIDINE TRANSPORTER 1 (LHT1) and LHT2. In nonseed plants, LHT homologs have been uncharacterized. Here, we isolated an ACC-insensitive mutant (Mpain) that is defective in ACC uptake in the liverwort Marchantia polymorpha. Mpain contained a frameshift mutation (1 bp deletion) in the MpLHT1 coding sequence, and was complemented by expression of a wild-type MpLHT1 transgene. Additionally, ACC insensitivity was re-created in CRISPR/Cas9-Mplht1 knockout mutants. We found that MpLHT1 can also transport l-hydroxyproline and l-histidine. We examined the physiological functions of MpLHT1 in vegetative growth and reproduction based on mutant phenotypes. Mpain and Mplht1 plants were smaller and developed fewer gemmae cups compared to wild-type plants. Mplht1 mutants also had reduced fertility, and archegoniophores displayed early senescence. These findings reveal that MpLHT1 serves as an ACC and amino acid transporter in M. polymorpha and has diverse physiological functions. We propose that MpLHT1 contributes to homeostasis of ACC and other amino acids in M. polymorpha growth and reproduction.


Assuntos
Arabidopsis , Marchantia , Aminoácidos Cíclicos , Arabidopsis/genética , Etilenos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fertilidade
6.
Plant Physiol ; 187(3): 1131-1148, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618089

RESUMO

Plant and plant organ movements are the result of a complex integration of endogenous growth and developmental responses, partially controlled by the circadian clock, and external environmental cues. Monitoring of plant motion is typically done by image-based phenotyping techniques with the aid of computer vision algorithms. Here we present a method to measure leaf movements using a digital inertial measurement unit (IMU) sensor. The lightweight sensor is easily attachable to a leaf or plant organ and records angular traits in real-time for two dimensions (pitch and roll) with high resolution (measured sensor oscillations of 0.36 ± 0.53° for pitch and 0.50 ± 0.65° for roll). We were able to record simple movements such as petiole bending, as well as complex lamina motions, in several crops, ranging from tomato to banana. We also assessed growth responses in terms of lettuce rosette expansion and maize seedling stem movements. The IMU sensors are capable of detecting small changes of nutations (i.e. bending movements) in leaves of different ages and in different plant species. In addition, the sensor system can also monitor stress-induced leaf movements. We observed that unfavorable environmental conditions evoke certain leaf movements, such as drastic epinastic responses, as well as subtle fading of the amplitude of nutations. In summary, the presented digital sensor system enables continuous detection of a variety of leaf motions with high precision, and is a low-cost tool in the field of plant phenotyping, with potential applications in early stress detection.


Assuntos
Tecnologia Digital/instrumentação , Lactuca/fisiologia , Musa/fisiologia , Folhas de Planta/fisiologia , Solanum lycopersicum/fisiologia , Zea mays/fisiologia , Relógios Circadianos , Produtos Agrícolas , Movimento , Estresse Fisiológico
7.
J Exp Bot ; 73(14): 4793-4805, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35526188

RESUMO

Ethylene signaling directs a pleiotropy of developmental processes in plants. In Arabidopsis, ethylene signaling converges at the master transcription factor Ethylene Insensitive 3 (EIN3), which has five homologs, EIN3-like 1-5 (EIL1-EIL5). EIL1 is most fully characterized and operates similarly to EIN3, while EIL3-5 are not involved in ethylene signaling. EIL2 remains less investigated. Our phylogenetic analysis revealed that EIL2 homologs have only been retrieved in the Brassicaceae family, suggesting that EIL2 diverged to have specific functions in the mustard family. By characterizing eil2 mutants, we found that EIL2 is involved in regulating ethylene-specific developmental processes in Arabidopsis thaliana, albeit in a more subtle way compared with EIN3/EIL1. EIL2 steers ethylene-triggered hypocotyl elongation in light-grown seedlings and is involved in lateral root formation. Furthermore, EIL2 takes part in regulating flowering time as eil2 mutants flower on average 1 d earlier and have fewer leaves. A pEIL2:EIL2:GFP translational reporter line revealed that EIL2 protein abundance is restricted to the stele of young developing roots. EIL2 expression, and not EIL2 protein stability, is regulated by ethylene in an EIN3/EIL1-dependent way. Despite EIL2 taking part in several developmental processes, the precise upstream and downstream regulation of this ethylene- and Brassicaceae-specific transcription factor remains to be elucidated.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
New Phytol ; 229(2): 770-782, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32790878

RESUMO

The gaseous plant hormone ethylene is produced by a fairly simple two-step biosynthesis route. Despite this pathway's simplicity, recent molecular and genetic studies have revealed that the regulation of ethylene biosynthesis is far more complex and occurs at different layers. Ethylene production is intimately linked with the homeostasis of its general precursor S-adenosyl-l-methionine (SAM), which experiences transcriptional and posttranslational control of its synthesising enzymes (SAM synthetase), as well as the metabolic flux through the adjacent Yang cycle. Ethylene biosynthesis continues from SAM by two dedicated enzymes: 1-aminocyclopropane-1-carboxylic (ACC) synthase (ACS) and ACC oxidase (ACO). Although the transcriptional dynamics of ACS and ACO have been well documented, the first transcription factors that control ACS and ACO expression have only recently been discovered. Both ACS and ACO display a type-specific posttranslational regulation that controls protein stability and activity. The nonproteinogenic amino acid ACC also shows a tight level of control through conjugation and translocation. Different players in ACC conjugation and transport have been identified over the years, however their molecular regulation and biological significance is unclear, yet relevant, as ACC can also signal independently of ethylene. In this review, we bring together historical reports and the latest findings on the complex regulation of the ethylene biosynthesis pathway in plants.


Assuntos
Etilenos , Liases , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Regulação da Expressão Gênica de Plantas , Liases/genética , Liases/metabolismo , Plantas/metabolismo
9.
Int J Mol Sci ; 20(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823420

RESUMO

The concept of "Sweet Immunity" postulates that sugar metabolism and signaling influence plant immune networks. In this study, we tested the potential of commercially available inulin-type fructans to limit disease symptoms caused by Botrytis cinerea in lettuce. Spraying mature lettuce leaves, with inulin-type fructans derived from burdock or chicory was as effective in reducing grey mold disease symptoms caused by Botrytis cinerea as spraying with oligogalacturonides (OGs). OGs are well-known defense elicitors in several plant species. Spraying with inulin and OGs induced accumulation of hydrogen peroxide and levels further increased upon pathogen infection. Inulin and OGs were no longer able to limit Botrytis infection when plants were treated with the ethylene signaling inhibitor 1-methylcyclopropene (1-MCP), indicating that a functional ethylene signaling pathway is needed for the enhanced defense response. Soluble sugars accumulated in leaves primed with OGs, while 1-MCP treatment had an overall negative effect on the sucrose pool. Accumulation of γ-aminobutyric acid (GABA), a stress-associated non-proteinogenic amino acid and possible signaling compound, was observed in inulin-treated samples after infection and negatively affected by the 1-MCP treatment. We have demonstrated for the first time that commercially available inulin-type fructans and OGs can improve the defensive capacity of lettuce, an economically important species. We discuss our results in the context of a possible recognition of fructans as Damage or Microbe Associated Molecular Patterns.


Assuntos
Botrytis/patogenicidade , Inulina/farmacologia , Lactuca/imunologia , Imunidade Vegetal , Ciclopropanos/farmacologia , Etilenos/metabolismo , Peróxido de Hidrogênio/metabolismo , Lactuca/efeitos dos fármacos , Lactuca/microbiologia , Ácido gama-Aminobutírico/metabolismo
10.
Plant Physiol ; 172(1): 533-45, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27489312

RESUMO

It is well known that ethylene regulates a diverse set of developmental and stress-related processes in angiosperms, yet its roles in early-diverging embryophytes and algae are poorly understood. Recently, it was shown that ethylene functions as a hormone in the charophyte green alga Spirogyra pratensis Since land plants evolved from charophytes, this implies conservation of ethylene as a hormone in green plants for at least 450 million years. However, the physiological role of ethylene in charophyte algae has remained unknown. To gain insight into ethylene responses in Spirogyra, we used mRNA sequencing to measure changes in gene expression over time in Spirogyra filaments in response to an ethylene treatment. Our analyses show that at the transcriptional level, ethylene predominantly regulates three processes in Spirogyra: (1) modification of the cell wall matrix by expansins and xyloglucan endotransglucosylases/hydrolases, (2) down-regulation of chlorophyll biosynthesis and photosynthesis, and (3) activation of abiotic stress responses. We confirmed that the photosynthetic capacity and chlorophyll content were reduced by an ethylene treatment and that several abiotic stress conditions could stimulate cell elongation in an ethylene-dependent manner. We also found that the Spirogyra transcriptome harbors only 10 ethylene-responsive transcription factor (ERF) homologs, several of which are regulated by ethylene. These results provide an initial understanding of the hormonal responses induced by ethylene in Spirogyra and help to reconstruct the role of ethylene in ancestral charophytes prior to the origin of land plants.


Assuntos
Parede Celular/efeitos dos fármacos , Etilenos/farmacologia , Perfilação da Expressão Gênica/métodos , Fotossíntese/efeitos dos fármacos , Spirogyra/efeitos dos fármacos , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Parede Celular/genética , Parede Celular/metabolismo , Análise por Conglomerados , Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Luz , Fotossíntese/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Spirogyra/genética , Spirogyra/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Temperatura
11.
Plant Physiol ; 169(1): 61-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26232489

RESUMO

Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses.


Assuntos
Etilenos/metabolismo , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Receptor Cross-Talk
12.
Plant Cell Environ ; 38(12): 2566-74, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25988356

RESUMO

Environmental inputs such as stress can modulate plant cell metabolism, but the detailed mechanism remains unclear. We report here that FERONIA (FER), a plasma membrane receptor-like kinase, may negatively regulate the S-adenosylmethionine (SAM) synthesis by interacting with two S-adenosylmethionine synthases (SAM1 and SAM2). SAM participates in ethylene, nicotianamine and polyamine biosynthetic pathways and provides the methyl group for protein and DNA methylation reactions. The Arabidopsis fer mutants contained a higher level of SAM and ethylene in plant tissues and displayed a dwarf phenotype. Such phenotype in the fer mutants was mimicked by over-expressing the S-adenosylmethionine synthetase in transgenic plants, whereas sam1/2 double mutant showed an opposite phenotype. We propose that FER receptor kinase, in response to environmental stress and plant hormones such as auxin and BR, interacts with SAM synthases and down-regulates ethylene biosynthesis.


Assuntos
Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Metionina Adenosiltransferase/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , S-Adenosilmetionina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Metionina Adenosiltransferase/genética , Mutação , Fosfotransferases , Plantas Geneticamente Modificadas , Poliaminas/metabolismo , Esteroides Heterocíclicos/metabolismo
13.
BMC Plant Biol ; 14: 11, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24401128

RESUMO

BACKGROUND: Solanum lycopersicum or tomato is extensively studied with respect to the ethylene metabolism during climacteric ripening, focusing almost exclusively on fruit pericarp. In this work the ethylene biosynthesis pathway was examined in all major tomato fruit tissues: pericarp, septa, columella, placenta, locular gel and seeds. The tissue specific ethylene production rate was measured throughout fruit development, climacteric ripening and postharvest storage. All ethylene intermediate metabolites (1-aminocyclopropane-1-carboxylic acid (ACC), malonyl-ACC (MACC) and S-adenosyl-L-methionine (SAM)) and enzyme activities (ACC-oxidase (ACO) and ACC-synthase (ACS)) were assessed. RESULTS: All tissues showed a similar climacteric pattern in ethylene productions, but with a different amplitude. Profound differences were found between tissue types at the metabolic and enzymatic level. The pericarp tissue produced the highest amount of ethylene, but showed only a low ACC content and limited ACS activity, while the locular gel accumulated a lot of ACC, MACC and SAM and showed only limited ACO and ACS activity. Central tissues (septa, columella and placenta) showed a strong accumulation of ACC and MACC. These differences indicate that the ethylene biosynthesis pathway is organized and regulated in a tissue specific way. The possible role of inter- and intra-tissue transport is discussed to explain these discrepancies. Furthermore, the antagonistic relation between ACO and E8, an ethylene biosynthesis inhibiting protein, was shown to be tissue specific and developmentally regulated. In addition, ethylene inhibition by E8 is not achieved by a direct interaction between ACO and E8, as previously suggested in literature. CONCLUSIONS: The Ethylene biosynthesis pathway and E8 show a tissue specific and developmental differentiation throughout tomato fruit development and ripening.


Assuntos
Etilenos/metabolismo , Solanum lycopersicum/metabolismo , Aminoácido Oxirredutases/metabolismo , Aminoácidos Cíclicos/metabolismo , Regulação da Expressão Gênica de Plantas , Liases/metabolismo , Solanum lycopersicum/fisiologia
14.
Planta ; 240(4): 679-86, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25034827

RESUMO

MAIN CONCLUSION: By integrating molecular, biochemical, and physiological data, ethylene biosynthesis in sugar beet was shown to be differentially regulated, affecting root elongation in a concentration-dependent manner. There is a close relation between ethylene production and seedling growth of sugar beet (Beta vulgaris L.), yet the exact function of ethylene during this early developmental stage is still unclear. While ethylene is mostly considered to be a root growth inhibitor, we found that external 1-aminocyclopropane-1-carboxylic acid (ACC) regulates root growth in sugar beet in a concentration-dependent manner: low concentrations stimulate root growth while high concentrations inhibit root growth. These results reveal that ethylene action during root elongation is strongly concentration dependent. Furthermore our detailed study of ethylene biosynthesis kinetics revealed a very strict gene regulation pattern of ACC synthase (ACS) and ACC oxidase (ACO), in which ACS is the rate liming step during sugar beet seedling development.


Assuntos
Aminoácidos Cíclicos/farmacologia , Beta vulgaris/crescimento & desenvolvimento , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Aminoácido Oxirredutases/efeitos dos fármacos , Aminoácido Oxirredutases/genética , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/genética , Perfilação da Expressão Gênica , Germinação/efeitos dos fármacos , Liases/efeitos dos fármacos , Liases/genética , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/genética
15.
New Phytol ; 202(3): 952-963, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24443955

RESUMO

The gaseous plant hormone ethylene is involved in many physiological processes including climacteric fruit ripening, in which it is a key determinant of fruit quality. A detailed model that describes ethylene biochemistry dynamics is missing. Often, kinetic modeling is used to describe metabolic networks or signaling cascades, mostly ignoring the link with transcriptomic data. We have constructed an elegant kinetic model that describes the transfer of genetic information into abundance and metabolic activity of proteins for the entire ethylene biosynthesis pathway during fruit development and ripening of tomato (Solanum lycopersicum). Our model was calibrated against a vast amount of transcriptomic, proteomic and metabolic data and showed good descriptive qualities. Subsequently it was validated successfully against several ripening mutants previously described in the literature. The model was used as a predictive tool to evaluate novel and existing hypotheses regarding the regulation of ethylene biosynthesis. This bottom-up kinetic network model was used to indicate that a side-branch of the ethylene pathway, the formation of the dead-end product 1-(malonylamino)-1-aminocyclopropane-1-carboxylic acid (MACC), might have a strong effect on eventual ethylene production. Furthermore, our in silico analyses indicated potential (post-) translational regulation of the ethylene-forming enzyme ACC oxidase.


Assuntos
Etilenos/biossíntese , Frutas/crescimento & desenvolvimento , Frutas/genética , Perfilação da Expressão Gênica/métodos , Modelos Biológicos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Aminoácido Oxirredutases/metabolismo , Vias Biossintéticas/genética , Calibragem , Frutas/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Cinética , Solanum lycopersicum/enzimologia , Mutação/genética , Reprodutibilidade dos Testes
17.
Physiol Plant ; 150(2): 161-73, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23957643

RESUMO

In this study, the short-term and dynamic changes of the ethylene biosynthesis of Jonagold apple during and after application of controlled atmosphere (CA) storage conditions were quantified using a systems biology approach. Rapid responses to imposed temperature and atmospheric conditions were captured by continuous online photoacoustic ethylene measurements. Discrete destructive sampling was done to understand observed changes of ethylene biosynthesis at the transcriptional, translational and metabolic level. Application of the ethylene inhibitor 1-methylcyclopropene (1-MCP) allowed for the discrimination between ethylene-mediated changes and ethylene-independent changes related to the imposed conditions. Online ethylene measurements showed fast and slower responses during and after application of CA conditions. The changes in 1-aminocyclopropane-1-carboxylate synthase (ACS) activity were most correlated with changes in ACS1 expression and regulated the cold-induced increase in ethylene production during the early chilling phase. Transcription of ACS3 was found ethylene independent and was triggered upon warming of CA-stored apples. Increased expression of ACO1 during shelf life led to a strong increase in 1-aminocyclopropane-1-carboxylate oxidase (ACO) activity, required for the exponential production of ethylene during system 2. Expression of ACO2 and ACO3 was upregulated in 1-MCP-treated fruit showing a negative correlation with ethylene production. ACO activity never became rate limiting.


Assuntos
Etilenos/biossíntese , Malus/metabolismo , Ciclopropanos/farmacologia , Ambiente Controlado , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Liases/metabolismo , Malus/efeitos dos fármacos , Malus/enzimologia , Malus/genética , Temperatura
18.
Front Genet ; 15: 1360332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655055

RESUMO

The S-RNase gene plays an essential role in the gametophytic self-incompatibility (GSI) system of Pyrus. It codes for the stylar-expressed S-RNase protein which inhibits the growth of incompatible pollen tubes through cytotoxicity and the induction of programmed cell death in the pollen tube. While research on the Pyrus GSI system has primarily focused on the S-RNase gene, there is still a lack of insight into its spatiotemporal expression profile and the factors that regulate it. Previous studies have suggested that S-RNase expression in the style is influenced by pollination and is dependent on the compatibility type. We here continue on this basic hypothesis by analyzing the spatiotemporal expression of the S-RNase alleles in Pyrus communis "Conference" styles in response to different types of pollination; namely, upon full- and semi-compatible pollination and upon incompatible selfing. The results revealed that temporal dynamics of S-RNase expression are influenced by the pollen's compatibility type, indicating the presence of a signaling mechanism between pollen and style to control S-RNase production during pollen tube growth. In our experiment, S-RNase expression continuously decreased after cross-pollination and in the unpollinated control. However, after a fully incompatible pollination, S-RNase expression remained constant. Finally, semi-compatible pollination showed a initially constant S-RNase expression for both alleles followed by a strong decrease in expression. Based on these results and previous findings, we propose a regulatory mechanism to explain the effect of pollination and the associated compatibility type on S-RNase expression in the style. This proposed mechanism could be used as a starting point for future research.

19.
Plant Physiol ; 160(3): 1498-514, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22977280

RESUMO

The concept of system 1 and system 2 ethylene biosynthesis during climacteric fruit ripening was initially described four decades ago. Although much is known about fruit development and climacteric ripening, little information is available about how ethylene biosynthesis is regulated during the postclimacteric phase. A targeted systems biology approach revealed a novel regulatory mechanism of ethylene biosynthesis of tomato (Solanum lycopersicum) when fruit have reached their maximal ethylene production level and which is characterized by a decline in ethylene biosynthesis. Ethylene production is shut down at the level of 1-aminocyclopropane-1-carboxylic acid oxidase. At the same time, 1-aminocyclopropane-1-carboxylic acid synthase activity increases. Analysis of the Yang cycle showed that the Yang cycle genes are regulated in a coordinated way and are highly expressed during postclimacteric ripening. Postclimacteric red tomatoes on the plant showed only a moderate regulation of 1-aminocyclopropane-1-carboxylic acid synthase and Yang cycle genes compared with the regulation in detached fruit. Treatment of red fruit with 1-methylcyclopropane and ethephon revealed that the shut-down mechanism in ethylene biosynthesis is developmentally programmed and only moderately ethylene sensitive. We propose that the termination of autocatalytic ethylene biosynthesis of system 2 in ripe fruit delays senescence and preserves the fruit until seed dispersal.


Assuntos
Etilenos/biossíntese , Frutas/crescimento & desenvolvimento , Redes e Vias Metabólicas , Metabolômica/métodos , Solanum lycopersicum/crescimento & desenvolvimento , Biologia de Sistemas/métodos , Aminoácido Oxirredutases/metabolismo , Aminoácidos Cíclicos/metabolismo , Biocatálise , Western Blotting , Respiração Celular , Frutas/citologia , Frutas/enzimologia , Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Liases/metabolismo , Solanum lycopersicum/citologia , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Reprodutibilidade dos Testes
20.
Physiol Plant ; 148(2): 176-88, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23020643

RESUMO

S-adenosyl-L-methionine (SAM) is the major methyl donor in cells and it is also used for the biosynthesis of polyamines and the plant hormone ethylene. During climacteric ripening of tomato (Solanum lycopersicum 'Bonaparte'), ethylene production rises considerably which makes it an ideal object to study SAM involvement. We examined in ripening fruit how a 1-MCP treatment affects SAM usage by the three major SAM-associated pathways. The 1-MCP treatment inhibited autocatalytic ethylene production but did not affect SAM levels. We also observed that 1-(malonylamino)cyclopropane-1-carboxylic acid formation during ripening is ethylene dependent. SAM decarboxylase expression was also found to be upregulated by ethylene. Nonetheless polyamine content was higher in 1-MCP-treated fruit. This leads to the conclusion that the ethylene and polyamine pathway can operate simultaneously. We also observed a higher methylation capacity in 1-MCP-treated fruit. During fruit ripening substantial methylation reactions occur which are gradually inhibited by the methylation product S-adenosyl-L-homocysteine (SAH). SAH accumulation is caused by a drop in adenosine kinase expression, which is not observed in 1-MCP-treated fruit. We can conclude that tomato fruit possesses the capability to simultaneously consume SAM during ripening to ensure a high rate of ethylene and polyamine production and transmethylation reactions. SAM usage during ripening requires a complex cellular regulation mechanism in order to control SAM levels.


Assuntos
Ciclopropanos/farmacologia , Etilenos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Poliaminas/metabolismo , S-Adenosilmetionina/metabolismo , Solanum lycopersicum/fisiologia , Adenosina Quinase/genética , Adenosina Quinase/metabolismo , Adenosilmetionina Descarboxilase/genética , Adenosilmetionina Descarboxilase/metabolismo , Ciclopropanos/metabolismo , Frutas/efeitos dos fármacos , Frutas/enzimologia , Frutas/genética , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Redes e Vias Metabólicas , Metilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliaminas/análise , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/análise , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA