Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Vet Pharmacol Ther ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847265

RESUMO

Orthologs of breast cancer resistance protein (BCRP/ABCG2), an ATP-binding cassette (ABC) efflux transmembrane transporter, are present in several species. The list of compounds known to interact with BCRP is growing, and many questions remain concerning species-specific variations in substrate specificity and affinity and the potency of inhibitors. As the most abundant efflux transporter known to be present in the blood-milk barrier, BCRP can increase the elimination of certain xenobiotics to milk, posing a risk for suckling offspring and dairy product consumers. Here we developed a model that can be employed to investigate species-specific differences between BCRP substrates and inhibitors. Membrane vesicles were isolated from transiently transduced human embryonic kidney (HEK) 293 cells, overexpressing BCRP, with human, bovine, caprine, and ovine cDNA sequences. To confirm BCRP transport activity in the transduced cells, D-luciferin efflux was measured and to confirm transport activity in the membrane vesicles, [3H] estrone-3-sulfate ([3H]E1S) influx was measured. We also determined the Michaelis-Menten constant (Km) and Vmax of [3H]E1S for each species. We have developed an in vitro transport model to study differences in compound interactions with BCRP orthologs from milk-producing animal species and humans. BCRP transport activity was demonstrated in the species-specific transduced cells by a reduced accumulation of D-luciferin compared with the control cells, indicating BCRP-mediated efflux of D-luciferin. Functionality of the membrane vesicle model was demonstrated by confirming ATP-dependent transport and by quantifying the kinetic parameters, Km and Vmax for the model substrate [3H]E1S. The values were not significantly different between species for the model substrates tested. This model can be insightful for appropriate inter-species extrapolations and risk assessments of xenobiotics in lactating woman and dairy animals.

2.
Arch Toxicol ; 97(3): 685-696, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36436016

RESUMO

Poly- and perfluoroalkyl substances (PFASs) are omnipresent in the environment and have been shown to accumulate in humans. Most PFASs are not biotransformed in animals and humans, so that elimination is largely dependent on non-metabolic clearance via bile and urine. Accumulation of certain PFASs in humans may relate to their reabsorption from the pre-urine by transporter proteins in the proximal tubules of the kidney, such as URAT1 and OAT4. The present study assessed the in vitro transport of 7 PFASs (PFHpA, PFOA, PFNA, PFDA, PFBS, PFHxS and PFOS) applying URAT1- or OAT4-transfected human embryonic kidney (HEK) cells. Virtually no transport of PFASs could be measured in URAT1-transfected HEK cells. All PFASs, except PFBS, showed clear uptake in OAT4-transfected HEK cells. In addition, these in vitro results were further supported by in silico docking and molecular dynamic simulation studies assessing transporter-ligand interactions. Information on OAT4-mediated transport may provide insight into the accumulation potential of PFASs in humans, but other kinetic aspects may play a role and should also be taken into account. Quantitative information on all relevant kinetic processes should be integrated in physiologically based kinetic (PBK) models, to predict congener-specific accumulation of PFASs in humans in a more accurate manner.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Transportadores de Ânions Orgânicos , Animais , Humanos , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas de Transporte/metabolismo , Fluorocarbonos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Ácidos Alcanossulfônicos/metabolismo
3.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32690641

RESUMO

Single nucleotide polymorphisms in the OATP1B1 transporter have been suggested to partially explain the large interindividual variation in rifampicin exposure. HEK293 cells overexpressing wild-type (WT) or OATP1B1 variants *1b, *4, *5, and *15 were used to determine the in vitro rifampicin intrinsic clearance. For OATP1B1*5 and *15, a 36% and 42% reduction in intrinsic clearance, respectively, compared to WT was found. We consider that these differences in intrinsic clearance most likely have minor clinical implications.


Assuntos
Transportadores de Ânions Orgânicos , Rifampina , Transporte Biológico , Células HEK293 , Humanos , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Polimorfismo de Nucleotídeo Único , Rifampina/metabolismo , Rifampina/farmacologia
4.
Arch Toxicol ; 94(9): 3027-3032, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32472168

RESUMO

Paracetamol (acetaminophen, APAP) overdose is a leading cause of acute drug-induced liver failure. APAP hepatotoxicity is mediated by the reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI). NAPQI is inactivated by conjugation with glutathione (GSH) to APAP-GSH, which is further converted into its cysteine derivative APAP-CYS. Before necrosis of hepatocytes occurs, APAP-CYS is measurable in plasma of the affected patient and it has been proposed as an early biomarker of acetaminophen toxicity. APAP-GSH and APAP-CYS can be extruded by hepatocytes, but the transporters involved are unknown. In this study we examined whether ATP-binding cassette (ABC) transporters play a role in the cellular efflux of APAP, APAP-GSH, and APAP-CYS. The ABC transport proteins P-gp/ABCB1, BSEP/ABCB11, BCRP/ABCG2, and MRP/ABCC1-5 were overexpressed in HEK293 cells and membrane vesicles were produced. Whereas P-gp, BSEP, MRP3, MRP5, and BCRP did not transport any of the compounds, uptake of APAP-GSH was found for MRP1, MRP2 and MRP4. APAP-CYS appeared to be a substrate of MRP4 and none of the ABC proteins transported APAP. The results suggest that the NAPQI metabolite APAP-CYS can be excreted into plasma by MRP4, where it could be a useful biomarker for APAP exposure and toxicity. Characterization of the cellular efflux of APAP-CYS is important for its development as a biomarker, because plasma concentrations might be influenced by drug-transporter interactions and upregulation of MRP4.


Assuntos
Acetaminofen/toxicidade , Cisteína/metabolismo , Glutationa/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acetaminofen/metabolismo , Células HEK293 , Humanos , Proteínas de Neoplasias/metabolismo
5.
Cell Microbiol ; 18(3): 369-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26332724

RESUMO

Multidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug-sensitivity profiles as wild type parasites. We show that MRP1-deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2-deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development.


Assuntos
Fígado/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Plasmodium berghei/patogenicidade , Plasmodium falciparum/patogenicidade , Esporozoítos/fisiologia , Animais , Animais Geneticamente Modificados , Antimaláricos/farmacologia , Sangue/parasitologia , Feminino , Hepatócitos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo
6.
Malar J ; 16(1): 422, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061131

RESUMO

BACKGROUND: Malaria, HIV/AIDS, and tuberculosis endemic areas show considerable geographical overlap, leading to incidence of co-infections. This requires treatment with multiple drugs, potentially causing adverse drug-drug interactions (DDIs). As anti-malarials are generally positively charged at physiological pH, they are likely to interact with human organic cation transporters 1 and 2 (OCT1 and OCT2). These transporters are involved in the uptake of drugs into hepatocytes and proximal tubule cells for subsequent metabolic conversion or elimination. This efflux of cationic drugs from hepatocytes and proximal tubule cells into bile and urine can be mediated by multidrug and toxin extrusion 1 and 2-K (MATE1 and MATE2-K) transporters, respectively. METHODS: Here, the interaction of anti-malarials with these transporters was studied in order to predict potential DDIs. Using baculovirus-transduced HEK293 cells transiently expressing human OCT1, OCT2, MATE1 and MATE2K uptake and inhibition was studied by a range of anti-malarials. RESULTS: Amodiaquine, proguanil, pyrimethamine and quinine were the most potent inhibitors of 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP) transport, a known substrate of OCT1/2, resulting in half maximal inhibitory concentrations (IC50) of 11, 13, 1.6, and 3.4 µM, respectively. Only quinine had a drug-drug index higher than the cut-off value of 0.1 for OCT2, therefore, in vivo pharmacokinetic studies focusing on DDIs involving this compound and other OCT2-interacting drugs are warranted. Furthermore, proguanil appeared to be a substrate of OCT1 and OCT2 with affinities of 8.1 and 9.0 µM, respectively. Additionally, MATE1 and MATE2-K were identified as putative transport proteins for proguanil. Finally, its metabolite cycloguanil was also identified as an OCT1, OCT2, MATE1 and MATE2-K substrate. CONCLUSION: Anti-malarials can reduce OCT1 and OCT2 transport activity in vitro. Furthermore, proguanil and cycloguanil were found to be substrates of OCT1, OCT2, MATE1 and MATE2-K, highlighting the importance of these transporters in distribution and excretion. As these compounds shares substrate overlap with metformin DDIs can be anticipated during concurrent treatment.


Assuntos
Antimaláricos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proguanil/metabolismo , Triazinas/metabolismo , Células HEK293 , Humanos , Fator 1 de Transcrição de Octâmero/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo
7.
Pharm Res ; 34(8): 1626-1636, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28281205

RESUMO

PURPOSE: To study the function and expression of nine naturally occurring single-nucleotide polymorphisms (G406R, F431L, S441N, P480L, F489L, M515R, L525R, A528T and T542A) that are predicted to reside in the transmembrane regions of the ABC transporter ABCG2. METHODS: The transport activity of the variants was tested in inside-out membrane vesicles from Sf9 insect and human derived HEK293 cells overexpressing ABCG2. Lucifer Yellow and estrone sulfate were used as probe substrates of activity. The expression levels and cellular localization of the variants was compared to the wild-type ABCG2 by western blotting and immunofluorescence microscopy. RESULTS: All studied variants of ABCG2 displayed markedly decreased transport in both Sf9-ABCG2 and HEK293-ABCG2 vesicles. Impaired transport could be explained for some variants by altered expression levels and cellular localization. Moreover, the destructive effect on transport activity of variants G406R, P480L, M515R and T542A is, to our knowledge, reported for the first time. CONCLUSIONS: These results indicate that the transmembrane region of ABCG2 is sensitive to amino acid substitution and that patients harboring these ABCG2 variant forms could suffer from unexpected pharmacokinetic events of ABCG2 substrate drugs or have an increased risk for diseases such as gout where ABCG2 is implicated.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Animais , Transporte Biológico , Variação Genética , Células HEK293 , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Células Sf9 , Transfecção
8.
Antimicrob Agents Chemother ; 60(6): 3372-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001813

RESUMO

Inhibition of ABC transporters is a common mechanism underlying drug-drug interactions (DDIs). We determined the inhibitory potential of antifungal drugs currently used for invasive fungal infections on ABC transporters P-glycoprotein (P-gp), MRP1 to MRP5, BCRP, and BSEP in vitro Membrane vesicles isolated from transporter-overexpressing HEK 293 cells were used to investigate the inhibitory potential of antifungal drugs (250 µM) on transport of model substrates. Concentration-inhibition curves were determined if transport inhibition was >60%. Fifty percent inhibitory concentrations (IC50s) for P-gp and BCRP were both 2 µM for itraconazole, 5 and 12 µM for hydroxyitraconazole, 3 and 6 µM for posaconazole, and 3 and 11 µM for isavuconazole, respectively. BSEP was strongly inhibited by itraconazole and hydroxyitraconazole (3 and 17 µM, respectively). Fluconazole and voriconazole did not inhibit any transport for >60%. Micafungin uniquely inhibited all transporters, with strong inhibition of MRP4 (4 µM). Anidulafungin and caspofungin showed strong inhibition of BCRP (7 and 6 µM, respectively). Amphotericin B only weakly inhibited BCRP-mediated transport (127 µM). Despite their wide range of DDIs, azole antifungals exhibit selective inhibition on efflux transporters. Although echinocandins display low potential for clinically relevant DDIs, they demonstrate potent in vitro inhibitory activity. This suggests that inhibition of ABC transporters plays a crucial role in the inexplicable (non-cytochrome P450-mediated) DDIs with antifungal drugs.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antifúngicos/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Anfotericina B/farmacologia , Transporte Biológico/efeitos dos fármacos , Equinocandinas/farmacologia , Fluconazol/farmacologia , Células HEK293 , Humanos , Itraconazol/análogos & derivados , Itraconazol/farmacologia , Lipopeptídeos/farmacologia , Micafungina , Triazóis/farmacologia , Voriconazol/farmacologia
9.
Antimicrob Agents Chemother ; 60(12): 7105-7114, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27645247

RESUMO

It is largely unknown if simultaneous administration of tuberculosis (TB) drugs and metformin leads to drug-drug interactions (DDIs). Disposition of metformin is determined by organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs). Thus, any DDIs would primarily be mediated via these transporters. This study aimed to assess the in vitro inhibitory effects of TB drugs (rifampin, isoniazid, pyrazinamide, ethambutol, amikacin, moxifloxacin, and linezolid) on metformin transport and whether TB drugs are also substrates themselves of OCTs and MATEs. HEK293 cells overexpressing OCT1, OCT2, OCT3, MATE1, and MATE2K were used to study TB drug-mediated inhibition of [14C]metformin uptake and to test if TB drugs are transporter substrates. Metformin uptake was determined by quantifying [14C]metformin radioactivity, and TB drug uptake was analyzed using liquid chromatography-tandem mass spectrometry. DDI indices were calculated (plasma maximum concentrations [Cmax]/50% inhibitory concentrations [IC50]), and based on the literature, a cutoff of >0.1 was assumed to warrant further in vivo investigation. Moxifloxacin was the only TB drug identified as a potent inhibitor (DDI index of >0.1) of MATE1- and MATE2K-mediated metformin transport, with IC50s of 12 µM (95% confidence intervals [CI], 5.1 to 29 µM) and 7.6 µM (95% CI, 0.2 to 242 µM), respectively. Of all TB drugs, only ethambutol appeared to be a substrate of OCT1, OCT2, OCT3, MATE1, and MATE2K. MATE1-mediated ethambutol uptake was inhibited strongly (DDI index of >0.1) by moxifloxacin (IC50, 12 µM [95% CI, 3.4 to 43 µM]). Our findings provide a mechanistic basis for DDI predictions concerning ethambutol. According to international guidelines, an in vivo interaction study is warranted for the observed in vitro interaction between ethambutol and moxifloxacin.


Assuntos
Interações Medicamentosas , Etambutol/farmacocinética , Fluoroquinolonas/farmacocinética , Metformina/farmacocinética , Antituberculosos/farmacocinética , Células HEK293/efeitos dos fármacos , Humanos , Hipoglicemiantes/farmacocinética , Moxifloxacina , Fator 1 de Transcrição de Octâmero/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico
10.
Chem Res Toxicol ; 27(5): 873-81, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24713091

RESUMO

Drug-induced cholestasis is a frequently observed side effect of drugs and is often caused by an unexpected interaction with the bile salt export pump (BSEP/ABCB11). BSEP is the key membrane transporter responsible for the transport of bile acids from hepatocytes into bile. Here, we developed a pharmacophore model that describes the molecular features of compounds associated with BSEP inhibitory activity. To generate input and validation data sets, in vitro experiments with membrane vesicles overexpressing human BSEP were used to assess the effect of compounds (50 µM) on BSEP-mediated (3)H-taurocholic acid transport. The model contains two hydrogen bond acceptor/anionic features, two hydrogen bond acceptor vector features, four hydrophobic/aromatic features, and exclusion volumes. The pharmacophore was validated against a set of 59 compounds, including registered drugs. The model recognized 9 out of 12 inhibitors (75%), which could not be identified based on general parameters, such as molecular weight or SlogP, alone. Finally, the model was used to screen a virtual compound database. A number of compounds found via virtual screening were tested and displayed statistically significant BSEP inhibition, ranging from 13 ± 1% to 67 ± 7% of control (P < 0.05). In conclusion, we developed and validated a pharmacophore model that describes molecular features found in BSEP inhibitors. The model may be used as an in silico screening tool to identify potentially harmful drug candidates at an early stage in drug development.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Desenho de Fármacos , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Simulação por Computador , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Ácido Taurocólico/metabolismo
11.
Malar J ; 13: 359, 2014 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-25218605

RESUMO

BACKGROUND: Therapeutic blood plasma concentrations of anti-malarial drugs are essential for successful treatment. Pharmacokinetics of pharmaceutical compounds are dependent of adsorption, distribution, metabolism, and excretion. ATP binding cassette (ABC) transport proteins are particularly involved in drug deposition, as they are located at membranes of many uptake and excretory organs and at protective barriers, where they export endogenous and xenobiotic compounds, including pharmaceuticals. In this study, a panel of well-established anti-malarial drugs which may affect drug plasma concentrations was tested for interactions with human ABC transport proteins. METHODS: The interaction of chloroquine, quinine, artemisinin, mefloquine, lumefantrine, atovaquone, dihydroartemisinin and proguanil, with transport activity of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), bile salt export pump (BSEP) and multidrug resistance-associated proteins (MRP) 1-4 were analysed. The effect of the anti-malarials on the ATP-dependent uptake of radio-labelled substrates was measured in membrane vesicles isolated from HEK293 cells overexpressing the ABC transport proteins. RESULTS: A strong and previously undescribed inhibition of BCRP-mediated transport by atovaquone with a 50% inhibitory concentration (IC50) of 0.23 µM (95% CI 0.17-0.29 µM) and inhibition of P-gp-mediated transport by quinine with an IC50 of 6.8 µM (95% CI 5.9-7.8 µM) was observed. Furthermore, chloroquine and mefloquine were found to significantly inhibit P-gp-mediated transport. BCRP transport activity was significantly inhibited by all anti-malarials tested, whereas BSEP-mediated transport was not inhibited by any of the compounds. Both MRP1- and MRP3-mediated transport were significantly inhibited by mefloquine. CONCLUSIONS: Atovaquone and quinine significantly inhibit BCRP- and P-gp- mediated transport at concentrations within the clinically relevant prophylactic and therapeutic range. Co-administration of these established anti-malarials with drugs that are BCRP or P-gp substrates may potentially lead to drug-drug interactions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antimaláricos/farmacologia , Atovaquona/farmacologia , Quinina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Células HEK293 , Humanos
12.
PLoS One ; 19(6): e0305906, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905201

RESUMO

Uric acid induces radical oxygen species formation, endothelial inflammation, and endothelial dysfunction which contributes to the progression of atherosclerosis. Febuxostat inhibits BCRP- and allopurinol stimulates MRP4-mediated uric acid efflux in human embryonic kidney cells. We hypothesized that endothelial cells express uric acid transporters that regulate intracellular uric acid concentration and that modulation of these transporters by febuxostat and allopurinol contributes to their different impact on cardiovascular mortality. The aim of this study was to explore a potential difference between the effect of febuxostat and allopurinol on uric acid uptake by human umbilical vein endothelial cells. Febuxostat increased intracellular uric acid concentrations compared with control. In contrast, allopurinol did not affect intracellular uric acid concentration. In line with this observation, febuxostat increased mRNA expression of GLUT9 and reduced MRP4 expression, while allopurinol did not affect mRNA expression of these uric acid transporters. These findings provide a possible pathophysiological pathway which could explain the higher cardiovascular mortality for febuxostat compared to allopurinol but should be explored further.


Assuntos
Alopurinol , Febuxostat , Proteínas Facilitadoras de Transporte de Glucose , Células Endoteliais da Veia Umbilical Humana , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Ácido Úrico , Humanos , Alopurinol/farmacologia , Febuxostat/farmacologia , Ácido Úrico/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Transporte Biológico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos
13.
BMC Vet Res ; 9: 259, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24359682

RESUMO

BACKGROUND: The bile salt export pump (BSEP/ABCB11) is the primary transporter for the excretion of bile acids from hepatocytes into bile. In human, inhibition of BSEP by drugs has been related to drug-induced cholestasis and subsequent cytotoxic effects. The role of BSEP in canine and feline liver diseases has not been studied in detail, but the same mechanism of inhibition by drugs as in humans could play a role in veterinary medicine. The aim of this study was to investigate the functional characteristics of feline Bsep in comparison with canine and human Bsep/BSEP with respect to substrate affinities and inhibitory potential of model drugs. Orthologs of all three species were cloned and cell membrane vesicles overexpressing feline, canine and human Bsep/BSEP were prepared for functional analyses. RESULTS: The cDNA sequences of the open reading frames of feline, canine and human Bsep/BSEP showed a high similarity between the species. Functional studies demonstrated for all species a tendency to a higher affinity of BSEP/Bsep for the conjugated bile acid taurocholic acid (TCA) than glycocholic acid (GCA), and a higher affinity for GCA than for the unconjugated cholic acid (CA). The inhibitory potency of the model inhibitors cyclosporine A, troglitazone and ketoconazole was characterized against TCA uptake into BSEP/Bsep containing membrane vesicles. All three substances potently inhibited TCA uptake without significant species differences. CONCLUSION: Structure and functional characteristics of cat, dog and human Bsep/BSEP appeared to be very similar, indicating that the properties of this transporter have been highly preserved among the different species. Therefore, inhibition of BSEP by drugs could also be a mechanism in cholestasis and liver disease in veterinary relevant animal species. This model could be used to predict drug-induced liver injury caused by BSEP inhibition at an early stage in veterinary drug development.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Ácidos e Sais Biliares/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Gatos , Clonagem Molecular , Cães , Células HEK293 , Humanos , Fígado/metabolismo , Hepatopatias/metabolismo , Hepatopatias/fisiopatologia , Hepatopatias/veterinária , Dados de Sequência Molecular
14.
J Glob Antimicrob Resist ; 34: 161-165, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37453496

RESUMO

OBJECTIVES: Mycobacterium avium (M. avium) complex bacteria cause opportunistic infections in humans. Treatment yields cure rates of 60% and consists of a macrolide, a rifamycin, and ethambutol, and in severe cases, amikacin. Mechanisms of antibiotic tolerance remain mostly unknown. Therefore, we studied the contribution of efflux and amikacin modification to antibiotic susceptibility. METHODS: We characterised M. avium ABC transporters and studied their expression together with other transporters following exposure to clarithromycin, amikacin, ethambutol, and rifampicin. We determined the effect of combining the efflux pump inhibitors berberine, verapamil and CCCP (carbonyl cyanide m-chlorophenyl hydrazone), to study the role of efflux on susceptibility. Finally, we studied the modification of amikacin by M. avium using metabolomic analysis. RESULTS: Clustering shows conservation between M. avium and M. tuberculosis and transporters from most bacterial subfamilies (2-6, 7a/b, 10-12) were found. The largest number of transporter encoding genes was up-regulated after clarithromycin exposure, and the least following amikacin exposure. Only berberine increased the susceptibility to clarithromycin. Finally, because of the limited effect of amikacin on transporter expression, we studied amikacin modification and showed that M. avium, in contrast to M. abscessus, is not able to modify amikacin. CONCLUSION: We show that M. avium carries ABC transporters from all major families important for antibiotic efflux, including homologues shown to have affinity for drugs included in treatment. Efflux inhibition in M. avium can increase susceptibility, but this effect is efflux pump inhibitor- and antibiotic-specific. Finally, the lack of amikacin modifying activity in M. avium is important for its activity.


Assuntos
Berberina , Mycobacterium tuberculosis , Humanos , Amicacina/farmacologia , Mycobacterium avium/genética , Claritromicina/farmacologia , Etambutol/farmacologia , Berberina/farmacologia , Antibacterianos/farmacologia , Complexo Mycobacterium avium , Proteínas de Membrana Transportadoras/genética , Transportadores de Cassetes de Ligação de ATP
15.
Cell Tissue Res ; 349(2): 551-63, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22581381

RESUMO

Breast cancer resistance protein (BCRP) is known for its protective function against the toxic effects of exogenous compounds. In addition to this, a role in the transport of endogenous compounds has been described. Since BCRP in the plasma membrane was shown to be regulated by sex steroids, we investigated the presence and possible role of BCRP in steroid hormone-producing organs. Therefore, the presence and localization of Bcrp was investigated in endocrine organs of wild-type mice. Furthermore, the interaction of various steroid hormones with human BCRP activity was studied. Quantitative PCR revealed Bcrp mRNA in the pituitary and adrenal glands, pancreas, ovary, testis and adipose tissue. Immunohistochemistry revealed the presence of Bcrp in the cortex of the adrenal gland and in plasma membranes of adipocytes. In the pituitary gland, pancreas, ovary and testis, Bcrp was mainly located in the capillaries. The interaction between BCRP and 12 steroid hormones was studied using membrane vesicles of HEK293-BCRP cells. Estradiol, testosterone, progesterone and androstenedione inhibited BCRP-mediated uptake of (3)H-estrone sulphate (E(1)S) most potently, with calculated inhibitory constant (Ki) values of 5.0 ± 0.2, 36 ± 14, 14.7 ± 1.3 and 217 ± 13 µM, respectively. BCRP function was attenuated non-competitively, which implies an allosteric inhibition of BCRP-mediated E(1)S transport by these steroids. In conclusion, localization of Bcrp in endocrine organs together with the efficient allosteric inhibition of the efflux pump by steroid hormones are suggestive for a role for BCRP in steroid hormone regulation.


Assuntos
Transportadores de Cassetes de Ligação de ATP/análise , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/metabolismo , Hormônios/metabolismo , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/metabolismo , Esteroides/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico Ativo , Neoplasias da Mama/genética , Feminino , Células HEK293 , Humanos , Camundongos , Proteínas de Neoplasias/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Transdução Genética
16.
Drug Metab Dispos ; 40(6): 1076-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22415933

RESUMO

Coumarin (1,2-benzopyrone) is a natural compound that has been used as a fragrance in the food and perfume industry and could have therapeutic usefulness in the treatment of lymphedema and different types of cancer. Several previous pharmacokinetic studies of coumarin have been performed in humans, which revealed extensive first-pass metabolism of the compound. 7-Hydroxycoumarin (7-HC) and its glucuronide (7-HC-G) are the main metabolites formed in humans, and via this route, 80 to 90% of the absorbed coumarin is excreted into urine, mainly as 7-HC-G. Active transport processes play a role in the urinary excretion of 7-HC-G; however, until now, the transporters involved remained to be elucidated. In this study, we investigated whether the efflux transporters multidrug resistance-associated proteins (MRP)1-4, breast cancer resistance protein, or P-glycoprotein play a role in 7-HC and 7-HC-G transport. For this purpose, we measured uptake of the metabolites into membrane vesicles overexpressing these transporters. Our results showed that 7-HC is not transported by any of the efflux transporters tested, whereas 7-HC-G was a substrate of MRP3 and MRP4. These results are in line with the pharmacokinetic profile of coumarin and suggest that MRP3 and MRP4 are the main transporters involved in the excretion of the coumarin metabolite 7-HC-G from liver and kidney.


Assuntos
Cumarínicos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Umbeliferonas/metabolismo , Transporte Biológico Ativo/fisiologia , Células HEK293 , Humanos
17.
Mol Pharm ; 9(5): 1351-60, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22428727

RESUMO

Although the CB1 receptor antagonist/inverse agonist rimonabant has positive effects on weight loss and cardiometabolic risk factors, neuropsychiatric side effects have prompted researchers to develop peripherally acting derivatives. Here, we investigated for a series of 3,4-diarylpyrazoline CB1 receptor antagonists if transport by the brain efflux transporter P-gp could be used as a selection criterion in the development of such drugs. All 3,4-diarylpyrazolines and rimonabant inhibited P-gp transport activity in membrane vesicles isolated from HEK293 cells overexpressing the transporter, but only the 1,1-dioxo-thiomorpholino analogue 23 exhibited a reduced accumulation (-38 ± 2%) in these cells, which could be completely reversed by the P-gp/BCRP inhibitor elacridar. In addition, 23 appeared to be a BCRP substrate, whereas rimonabant was not. In rats, the in vivo brain/plasma concentration ratio of 23 was significantly lower than for rimonabant (0.4 ± 0.1 vs 6.2 ± 1.6, p < 0.001). Coadministration of elacridar resulted in an 11-fold increase of the brain/plasma ratio for 23 (p < 0.01) and only 1.4-fold for rimonabant (p < 0.05), confirming the involvement of P-gp and possibly BCRP in limiting the brain entrance of 23 in vivo. In conclusion, these data support the conception that efflux via transporters such as P-gp and BCRP can limit the brain penetration of CB1 receptor antagonists, and that this property could be used in the development of peripheral antagonists.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acridinas/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica , Western Blotting , Antagonistas de Receptores de Canabinoides/metabolismo , Linhagem Celular , Humanos , Cinética , Masculino , Proteínas de Neoplasias/metabolismo , Piperidinas/farmacologia , Pirazóis/farmacologia , Quinidina/farmacologia , Ratos , Ratos Wistar , Rimonabanto , Espectrometria de Massas em Tandem , Tetra-Hidroisoquinolinas/farmacologia
18.
J Clin Pharmacol ; 62(3): 385-396, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34554580

RESUMO

Moxifloxacin has an important role in the treatment of tuberculosis (TB). Unfortunately, coadministration with the cornerstone TB drug rifampicin results in suboptimal plasma exposure. We aimed to gain insight into the moxifloxacin pharmacokinetics and the interaction with rifampicin. Moreover, we provided a mechanistic framework to understand moxifloxacin pharmacokinetics. We developed a physiologically based pharmacokinetic model in Simcyp version 19, with available and newly generated in vitro and in vivo data, to estimate pharmacokinetic parameters of moxifloxacin alone and when administered with rifampicin. By combining these strategies, we illustrate that the role of P-glycoprotein in moxifloxacin transport is limited and implicate MRP2 as transporter of moxifloxacin-glucuronide followed by rapid hydrolysis in the gut. Simulations of multiple dose area under the plasma concentration-time curve (AUC) of moxifloxacin (400 mg once daily) with and without rifampicin (600 mg once daily) were in accordance with clinically observed data (predicted/observed [P/O] ratio of 0.87 and 0.80, respectively). Importantly, increasing the moxifloxacin dose to 600 mg restored the plasma exposure both in actual patients with TB as well as in our simulations. Furthermore, we extrapolated the single dose model to pediatric populations (P/O AUC ratios, 1.04-1.52) and the multiple dose model to children with TB (P/O AUC ratio, 1.51). In conclusion, our combined approach resulted in new insights into moxifloxacin pharmacokinetics and accurate simulations of moxifloxacin exposure with and without rifampicin. Finally, various knowledge gaps were identified, which may be considered as avenues for further physiologically based pharmacokinetic refinement.


Assuntos
Antituberculosos/farmacologia , Moxifloxacina/farmacocinética , Rifampina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Adulto , Antituberculosos/farmacocinética , Área Sob a Curva , Criança , Quimioterapia Combinada , Glucuronosiltransferase/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Proteína 2 Associada à Farmacorresistência Múltipla/metabolismo
19.
Front Pharmacol ; 13: 1042989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438828

RESUMO

Background: Despite (neo) adjuvant chemotherapy with cisplatin, doxorubicin and methotrexate, some patients with primary osteosarcoma progress during first-line systemic treatment and have a poor prognosis. In this study, we investigated whether patients with early disease progression (EDP), are characterized by a distinctive pharmacogenetic profile. Methods and Findings: Germline DNA from 287 Dutch high-grade osteosarcoma patients was genotyped using the DMET Plus array (containing 1,936 genetic markers in 231 drug metabolism and transporter genes). Associations between genetic variants and EDP were assessed using logistic regression models and associated variants (p <0.05) were validated in independent cohorts of 146 (Spain and United Kingdom) and 28 patients (Australia). In the association analyses, EDP was significantly associated with an SLC7A8 locus and was independently validated (meta-analysis validation cohorts: OR 0.19 [0.06-0.55], p = 0.002). The functional relevance of the top hits was explored by immunohistochemistry staining and an in vitro transport models. SLC7A8 encodes for the L-type amino acid transporter 2 (LAT2). Transport assays in HEK293 cells overexpressing LAT2 showed that doxorubicin, but not cisplatin and methotrexate, is a substrate for LAT2 (p < 0.0001). Finally, SLC7A8 mRNA expression analysis and LAT2 immunohistochemistry of osteosarcoma tissue showed that the lack of LAT2 expression is a prognostic factor of poor prognosis and reduced overall survival in patients without metastases (p = 0.0099 and p = 0.14, resp.). Conclusion: This study identified a novel locus in SLC7A8 to be associated with EDP in osteosarcoma. Functional studies indicate LAT2-mediates uptake of doxorubicin, which could give new opportunities to personalize treatment of osteosarcoma patients.

20.
Drug Metab Dispos ; 39(7): 1294-302, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21511945

RESUMO

Cannabinoid type 1 (CB1) receptor antagonists have been developed for the treatment of obesity, but a major disadvantage is that they cause unwanted psychiatric effects. Selective targeting of peripheral CB1 receptors might be an option to circumvent these side effects. Multidrug resistance-associated proteins (MRPs) can influence the pharmacokinetics of drugs and thereby affect their disposition in the body. In this study, we investigated the interaction of the prototypic CB1 receptor antagonist rimonabant and a series of 3,4-diarylpyrazoline CB1 receptor antagonists with MRP1, MRP2, MRP3, and MRP4 in vitro. Their effect on ATP-dependent transport of estradiol 17-ß-D-glucuronide (E(2)17ßG) was measured in inside-out membrane vesicles isolated from transporter-overexpressing human embryonic kidney 293 cells. Rimonabant inhibited MRP1 transport activity more potently than MRP4 (K(i) of 1.4 and 4 µM, respectively), whereas the 3,4-diarylpyrazolines were stronger inhibitors of MRP4- than MRP1-mediated transport. A number of CB1 receptor antagonists, including rimonabant, stimulated MRP2 and MRP3 transport activity at low substrate concentrations but inhibited E(2)17ßG transport at high substrate concentrations. The interaction of 3,4-diarylpyrazolines and rimonabant with MRP1-4 indicates their potential for drug-drug interactions. Preliminary in vivo data suggested that for some 3,4-diarylpyrazolines the relatively lower brain efficacy may be related to their inhibitory potency against MRP4 activity. Furthermore, this study shows that the modulatory effects of the 3,4-diarylpyrazolines were influenced by their chemical properties and that small variations in structure can determine the affinity of these compounds for efflux transporters and thereby affect their pharmacokinetic behavior.


Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Western Blotting , Linhagem Celular , Cromatografia Líquida , Humanos , Transporte Proteico , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA