Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2310251, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38362704

RESUMO

Dental adhesives are widely used in daily practice for minimally invasive restorative dentistry but suffer from bond degradation and biofilm attack. Bio-inspired by marine mussels having excellent surface-adhesion capability and high chemical affinity of polydopamine (PDA) to metal ions, herein, experimental zinc (Zn)-containing polydopamine-based adhesive formulation, further being referred to as "Zn-PDA@SiO2 "-incorporated adhesive is proposed as a novel dental adhesive. Different Zn contents (5 and 10 mm) of Zn-PDA@SiO2 are prepared. Considering the synergistic effect of Zn and PDA, Zn-PDA@SiO2 not only presents excellent antibacterial potential and notably inhibits enzymatic activity (soluble and matrix-bound proteases), but also exhibits superior biocompatibility and biosafety in vitro/vivo. The long-term bond stability is substantially improved by adding 5 wt% 5 mm Zn-PDA@SiO2 to the primer. The aged bond strength of the experimentally formulated dental adhesives applied in self-etch (SE) bonding mode is 1.9 times higher than that of the SE gold-standard adhesive. Molecular dynamics calculations indicate the stable formation of covalent bonds, Zn-assisted coordinative bonds, and hydrogen bonds between PDA and collagen. Overall, this bioinspired dental adhesive provides an avenue technology for innovative biomedical applications and has already revealed promising perspectives for dental restorative dentistry.

2.
Small ; 19(5): e2206041, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36446638

RESUMO

Membrane technology has shown a viable potential in conversion of liquid-waste or high-salt streams to fresh waters and resources. However, the non-adjustability pore size of traditional membranes limits the application of ion capture due to their low selectivity for target ions. Recently, covalent organic frameworks (COFs) have become a promising candidate for construction of advanced ion separation membranes for ion resource recovery due to their low density, large surface area, tunable channel structure, and tailored functionality. This tutorial review aims to analyze and summarize the progress in understanding ion capture mechanisms, preparation processes, and applications of COF-based membranes. First, the design principles for target ion selectivity are illustrated in terms of theoretical simulation of ions transport in COFs, and key properties for ion selectivity of COFs and COF-based membranes. Next, the fabrication methods of diverse COF-based membranes are classified into pure COF membranes, COF continuous membranes, and COF mixed matrix membranes. Finally, current applications of COF-based membranes are highlighted: desalination, extraction, removal of toxic metal ions, radionuclides and lithium, and acid recovery. This review presents promising approaches for design, preparation, and application of COF-based membranes in ion selectivity for recovery of ionic resources.

3.
Environ Sci Technol ; 57(8): 3013-3020, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36786864

RESUMO

Membrane science and technology is growing rapidly worldwide and continues to play an increasingly important role in diverse fields by offering high separation efficiency with low energy consumption. Membranes have also shown great promise for "green" separation. A majority of the investigations in the field are devoted to the membrane fabrication and modification with the ultimate goals of enhancing the properties and separation performance of membranes. However, less attention has been paid to membrane life cycle management, particularly at the end of service. This is becoming very important, especially taking into account the trends toward sustainable development and carbon neutrality. On the contrary, this can be a great opportunity considering the large variety of membrane processes, especially in terms of the size and capacity of plants in operation. This work aims to highlight the prominent aspects that govern membrane life cycle management with special attention to life cycle assessment (LCA). While fabrication, application, and recycling are the three key aspects of LCA, we focus here on membrane (module) recycling at the end of life by elucidating the relevant aspects, potential criteria, and strategies that effectively contribute to the achievement of green development and sustainability goals.


Assuntos
Reciclagem , Tecnologia , Animais , Estágios do Ciclo de Vida
4.
Environ Sci Technol ; 56(22): 16221-16229, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36287592

RESUMO

Traditional technologies such as precipitation and coagulation have been adopted for fluoride-rich and silica-rich wastewater treatment, respectively, but waste solid generation and low wastewater processing efficiency are still the looming concern. Efficient resource recovery technologies for different wastewater treatments are scarce for environment and industry sustainability. Herein, a resource capture ultrafiltration-bipolar membrane electrodialysis (RCUF-BMED) system was designed into a closed-loop process for simultaneous capture and recovery of fluoride and silica as sodium silicofluoride (Na2SiF6) from mixed fluoride-rich and silica-rich wastewaters, as well as achieving zero liquid discharge. This RCUF-BMED system comprised two key parts: (1) capture of fluoride and silica from two wastewaters using acid, and recovery of the Na2SiF6 using base by UF and (2) UF permeate conversion for acid/base and freshwater generation by BMED. With the optimized RCUF-BMED system, fluoride and silica can be selectively captured from wastewater with removal efficiencies higher than 99%. The Na2SiF6 recovery was around 72% with a high purity of 99.1%. The aging and cyclic experiments demonstrated the high stability and recyclability of the RCUF-BMED system. This RCUF-BMED system has successfully achieved the conversion of toxic fluoride and silica into valuable Na2SiF6 from mixed wastewaters, which shows great application potential in the industry-resource-environment nexus.


Assuntos
Ultrafiltração , Águas Residuárias , Fluoretos , Dióxido de Silício , Membranas Artificiais
5.
Environ Sci Technol ; 56(24): 17998-18007, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36459442

RESUMO

Effective recovery of dyes and salts from textile wastewater by nanofiltration (NF) remains a serious challenge due to the high consumption of water and energy caused by the limited performance of the available membranes. Herein, a novel strategy is described to prepare loose polyester NF membranes by using renewable quercetin as the aqueous monomer for fractionation of high salinity textile wastewater with minimal water and energy consumption. Compared with NF270, taken as the reference membrane, the QE-0.2/TMC-0.2 membrane significantly improved the efficiency for dye/salt fractionation by 288%. The water consumption was also decreased by 42.9%. The efficiency is attributed to an ultrahigh water permeance of 198 ± 2.1 L-1 m-2 h-1 bar-1 with a high selectivity of 123 (extremely low NaCl rejection of 1.6% and high Congo red rejection of 99.2%). The optimal quercetin-based membrane had an ultrathin separation layer of about 39 ± 1.2 nm with good hydrophilicity and negative charge density. Moreover, this work includes a novel method of comparison with a theoretically ideal membrane, which shows that both the energy and water consumption are near their theoretical minimum. This strategy is expected to save energy and minimize carbon emissions for membrane-based wastewater treatment systems.


Assuntos
Águas Residuárias , Água , Quercetina , Salinidade , Membranas Artificiais , Cloreto de Sódio , Corantes , Têxteis
6.
Environ Sci Technol ; 56(3): 1927-1937, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007424

RESUMO

In spite of extensive research, fouling is still the main challenge for nanofiltration membranes, generating an extra transport resistance and requiring a larger operational pressure in practical applications. We fabricated a highly antifouling nanofiltration membrane by grafting poly(N-isopropylacrylamide) (PNIPAM) chains on a bromine-containing polyamide layer. The resulting membrane was found to have a double permeance compared to the pristine membrane, while the rejection of multivalent ions remained the same. In addition, PNIPAM chains yielded a better deposition resistance and adhesion resistance, thereby mitigating the increase of fouling and promoting the recovery of flux during the filtration and traditional cleaning stages, respectively. Moreover, PNIPAM chains shrank when the water temperature was above the lower critical solution temperature (LCST), indicating the formation of a buffer layer between the membrane and pollutants. The buffer layer would eliminate the membrane-foulant interaction energy, thus further enhancing the detachment of pollutants. This simple and efficient cleaning method could act as an enhanced cleaning procedure to remove irreversible fouling. This provides new insights into the fabrication of enhanced antifouling membranes using smart responsive polymer chains.

7.
J Environ Manage ; 301: 113922, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731960

RESUMO

While water is a key resource required to sustain life, freshwater sources and aquifers are being depleted at an alarming rate. As a mitigation strategy, saline water desalination is commonly used to supplement the available water resources beyond direct water supply. This is achieved through effective advanced water purification processes enabled to handle complex matrix of saline wastewater. Membrane technology has been extensively evaluated for water desalination. This includes the use of reverse osmosis (RO) (the most mature membrane technology for desalination), pervaporation (PV), electrodialysis (ED), membrane distillation (MD), and membrane crystallization (MCr). Though nanofiltration (NF) is not mainly applied for desalination purposes, it is included in the reviewed processes because of its ability to reach 90% salt rejection efficiency for water softening. However, its comparison with other technologies is not provided since NF cannot be used for removal of NaCl during desalination. Remarkably, membrane processes remain critically affected by several challenges including membrane fouling. Moreover, capital expenditure (CAPEX) and operating expenditure (OPEX) are the key factors influencing the establishment of water desalination processes. Therefore, this paper provides a concise and yet comprehensive review of the membrane processes used to desalt saline water. Furthermore, the successes and failures of each process are critically reviewed. Finally, the CAPEX and OPEX of these water desalination processes are reviewed and compared. Based on the findings of this review, MD is relatively comparable to RO in terms of process performance achieving 99% salt rejections. Also, high salt rejections are reported on ED and PV. The operation and maintenance (O&M) costs remain lower in ED. Notably, the small-scale MD OPEX falls below that of RO. However, the large-scale O&M in MD is rarely reported due to its slow industrial growth, thus making RO the most preferred in the current water desalination markets.


Assuntos
Água do Mar , Purificação da Água , Custos e Análise de Custo , Osmose , Tecnologia
8.
Molecules ; 27(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35011519

RESUMO

Hydrolysis is the heart of the lignocellulose-to-bioethanol conversion process. Using enzymes to catalyze the hydrolysis represents a more environmentally friendly pathway compared to other techniques. However, for the process to be economically feasible, solving the product inhibition problem and enhancing enzyme reusability are essential. Prior research demonstrated that a flat-sheet membrane bioreactor (MBR), using an inverted dead-end filtration system, could achieve 86.7% glucose yield from purified cellulose in 6 h. In this study, the effectiveness of flat-sheet versus radial-flow MBR designs was assessed using real, complex lignocellulose biomass, namely date seeds (DSs). The tubular radial-flow MBR used here had more than a 10-fold higher membrane surface area than the flat-sheet MBR design. With simultaneous product separation using the flat-sheet inverted dead-end filtration MBR, a glucose yield of 10.8% from pretreated DSs was achieved within 8 h of reaction, which was three times higher than the yield without product separation, which was only 3.5% within the same time and under the same conditions. The superiority of the tubular radial-flow MBR to hydrolyze pretreated DSs was confirmed with a glucose yield of 60% within 8 h. The promising results obtained by the novel tubular MBR could pave the way for an economic lignocellulose-to-bioethanol process.


Assuntos
Reatores Biológicos , Celulose/química , Celulose/isolamento & purificação , Biomassa , Fracionamento Químico/métodos , Glucose/metabolismo , Hidrólise , Análise Espectral
9.
J Environ Manage ; 299: 113652, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34482113

RESUMO

Oil spills, which are often caused by crude oil transportation accidents, contaminate coastal waters and land and can harm aquatic life, seabirds, humans, and the entire ecosystem. Ocean currents and wind complicate oil spill cleanup and extend the oil spill area. This study proposes a new approach to control oil spills using solids recovered from the treatment of reject brine through a novel multistage desalination process. The aim is to produce applicable adsorbent for oil spill cleanup especially in the final cleaning stages. The multistage desalination process is based on the electrochemical treatment of high-salinity reject brine and Solvay and modified Solvay liquid effluents in a closed Plexiglas electrocoagulation cell. After the electrochemical treatment, the collected solids were dried and ground for utilization as adsorbents in oil spill cleanup. Results were promising for the adsorbent produced from the electrochemical treatment of the modified Solvay effluent. A maximum adsorption capacity of 2.8 g oil/g adsorbent was achieved, with an oil recovery of 98%. In addition, the regenerated solids after toluene extraction process were recycled and achieved an adsorption capacity of 2.1 g oil/g adsorbent in the second oil spill clean-up cycle. The structural and chemical characteristics of the adsorbents produced from the multistage desalination process were investigated using X-ray powder diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Results support the adoption of the collected solids as effective oil-adsorbent materials.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Adsorção , Ecossistema , Humanos , Poluentes Químicos da Água/análise
10.
Environ Sci Technol ; 54(20): 13304-13313, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32955252

RESUMO

In this study, a modified bipolar membrane electrodialysis system equipped with a "back-to-back" soil compartment was fabricated for simultaneous removal of trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)) from contaminated soils. The results showed that the soil solution pH had a significant effect on the Cr(III) and Cr(VI) desorption, and the desorption data fit well with the Elovich kinetic model. Current density had an obvious effect on Cr(III) and Cr(VI) removal, cell voltage, soil pH, current efficiency, and specific energy consumption, and the optimal current density was 2.0 mA/cm2. The removal efficiencies of Cr(III) and Cr(VI) were both 99.8%, while Cr(III) and Cr(VI) recoveries were somewhat lower at 87 and 90%, respectively, because some Cr(III) and Cr(VI) were adsorbed by the membranes. An energy consumption analysis indicates that the back-to-back soil compartment equipped system increased the current efficiency and decreased the specific energy consumption. When a system equipped with two back-to-back soil compartments was used to remove chromium from soil, the current efficiency increased to 28.8% and the specific energy consumption decreased to 0.048 kWh/g. The experimental results indicate that the proposed process has the potential to be an effective technique for the treatment of soil contaminated with heavy metals.


Assuntos
Poluentes do Solo , Solo , Cromo/análise , Poluição Ambiental , Poluentes do Solo/análise
11.
Environ Sci Technol ; 54(3): 1946-1954, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31916754

RESUMO

Conventional dense thin-film composite (TFC) membranes evince a universally low water permeability, the increase of which typically relies on introducing additional transport channels based on intricate steps within a membrane preparation process. In this study, we reported a novel and simplified procedure for the fabrication of high-performance TFC membranes. Specifically, the dissolution of aqueous monomers in the casting solution was utilized for the following interfacial polymerization (IP). Since the monomers diffused to the water bath during phase inversion, the control of precipitation time enabled an effective regulation of the monomer concentration in the formed polymeric substrates, where the IP reaction was initiated by the addition of the organic phase. The entire and uniform embedment of aqueous monomers inside the substrates contributed to the formation of ultrathin and smooth selective layers. An excellent separation performance (i.e., water permeability: 34.7 L m-2 h-1 bar-1; Na2SO4 rejection: ∼96%) could be attained using two types of aqueous monomers (i.e., piperazine and ß-cyclodextrin), demonstrating the effectiveness and universality of this method. Compared to the conventional immersion-based process, this novel procedure shows distinct advantages in reducing monomer usage, shortening the production cycle, and achieving a more superior membrane performance, which is highly promising for large-scale membrane manufacture.


Assuntos
Membranas Artificiais , Água , Difusão , Permeabilidade , Polimerização
12.
Chem Soc Rev ; 48(10): 2665-2681, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31025660

RESUMO

Covalent organic frameworks (COFs), which are constructed from organic linkers, are a new class of crystalline porous materials comprising periodically extended and covalently bound network structures. The intrinsic structures and the tailorable organic linkers endow COFs with a low density, large surface area, tunable pore size and structure, and facilely-tailored functionality, attracting increasing interests in different fields including membrane separations. Exciting research activities ranging from fabrication strategies to separation applications of COF-based membranes have appeared. This review analyzes the synthesis and applications of diverse continuous/discontinuous COF membranes, such as COF-based mixed matrix membranes (MMMs), COF-based thin film nanocomposite (TFN) membranes, and free-standing COF films. Special attention was given to pore size, stability, hydrophilicity/hydrophobicity and surface charge of COFs in view of determining proper COFs for membrane fabrication, along with the approaches to fabricate COF-based membranes, such as blending, in situ growth, layer-by-layer stacking and interfacial polymerization (IP). Moreover, applications of COF-based membranes in gas separation, water treatment (deaslination and dye removal), organic solvent nanofiltration (OSN), pervaporation and fuel cell are disscussed. Finally, we illustrate the advantages and disadvantages of COF-based membranes through a comparison with MOF-based membranes, and the remaining challenges and future opportunities in this field.

13.
J Environ Sci (China) ; 77: 218-228, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30573086

RESUMO

Five negatively charged organic compounds with different structures, sodium methane sulfonate (MS), sodium benzene sulfonate (BS), sodium 6-hydroxynaphthalene-2-sulfonate (NSS), sodium dodecyl sulfate (SDS), and sodium dodecyl benzene sulfonate (SDBS), were used to examine the fouling of an anion exchange membrane (AEM) in electrodialysis (ED), to explore the effect of molecular characteristics on the fouling behavior on the AEM and changes in the surface and electrochemical properties of the AEM. Results indicated that the fouling degree of the AEM by the different organics followed the order: SDBS > SDS > NSS > BS > MS. SDBS and SDS formed a dense fouling layer on the surface of the AEM, which was the main factor in the much more severe membrane fouling, and completely restricted the transmembrane ion migration. The other three organics caused fouling of the AEM by adsorption on the surface and /or accumulation in the interlayer of the AEM, and exhibited almost no influence on the transmembrane ion migration. It was also concluded that the organics with benzene rings caused more severe fouling of the AEM due to the stronger affinity interaction and steric effect between the organics and the AEM compared with organics with aliphatic chains.


Assuntos
Membranas Artificiais , Compostos Orgânicos/química , Incrustação Biológica , Diálise , Eletroquímica , Troca Iônica
14.
Environ Sci Technol ; 52(18): 10698-10708, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30118599

RESUMO

Use of tight ultrafiltration (UF) membranes has created a new pathway in fractionation of dye/salt mixtures from textile wastewater for sustainable resource recovery. Unexpectedly, a consistently high rejection for the dyes with smaller sizes related to the pore sizes of tight UF membranes is yielded. The potential mechanism involved in this puzzle remains unclear. In this study, seven tailored UF membranes with molecular weight cut-offs (MWCOs) from 6050 to 17530 Da were applied to separate dye/salt mixtures. These UF membranes allowed a complete transfer for NaCl and Na2SO4, due to large pore sizes. Additionally, these UF membranes had acceptably high rejections for direct and reactive dyes, due to the aggregation of dyes as clusters for enhanced sizes and low diffusivity. Specifically, the membrane with an MWCO of 7310 Da showed a complete rejection for reactive blue 2 and direct dyes. An integrated UF-diafiltration process was subsequently designed for fractionation of reactive blue 2/Na2SO4 mixture, achieving 99.84% desalination efficiency and 97.47% dye recovery. Furthermore, reactive blue 2 can be concentrated from 2.01 to 31.80 g·L-1. These results indicate that UF membranes even with porous structures are promising for effective fractionation of dyes and salts in sustainable textile wastewater treatment.


Assuntos
Águas Residuárias , Purificação da Água , Corantes , Membranas Artificiais , Cloreto de Sódio , Têxteis , Ultrafiltração
15.
Environ Sci Technol ; 52(2): 765-774, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29251922

RESUMO

In this study, in situ pretreatments with ozone and Fe(II)/persulfate were employed to suppress membrane fouling during the filtration of algae-laden water and to improve the rejection of metabolites. Both ozonation and Fe(II)/persulfate pretreatments negatively impacted the cell integrity, especially ozonation. Fe(II)/persulfate pretreatment improved the removal of dissolved organic carbon and microcystin-LR, but ozonation resulted in a deterioration in the quality of the filtered water. This suggests that the Fe(II)/persulfate oxidation is selective for organic degradation over cell damage. With ozonation, 2-methylisoborneol and geosmin were detected in the filtered water, and the irreversible fouling increased. The intracellular organic release and generation of small organic compounds with ozonation may be the reason for the increased membrane fouling. Fe(II)/persulfate oxidation substantially mitigated the membrane-fouling resistance at concentrations over 0.2 mM compared to the membrane-fouling resistance without oxidation. The combined effect of oxidation and coagulation is likely the reason for the excellent fouling control with Fe(II)/persulfate pretreatment. Membrane fouling during the filtration of algae-laden water is successively governed by complete-blocking and cake-filtration mechanisms. Ozonation caused a shift in the initial major mechanism to intermediate blocking, and the Fe(II)/persulfate pretreatment (>0.2 mM) converted the dominant mechanism into single-standard blocking.


Assuntos
Ozônio , Purificação da Água , Compostos Ferrosos , Membranas Artificiais , Ultrafiltração
16.
Chem Soc Rev ; 46(23): 7124-7144, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29110013

RESUMO

Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.


Assuntos
Estruturas Metalorgânicas/química , Tamanho da Partícula , Solventes/química , Solventes/isolamento & purificação , Propriedades de Superfície
17.
Water Sci Technol ; 78(12): 2639-2646, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30767928

RESUMO

Pilot-scale constructed wetlands (CWs) that allowed wastewater to flow with high interstitial velocities in a controlled environment were used to evaluate the possibility of using mass transfer approach to design horizontal subsurface flow constructed wetlands (HSSF-CWs) treating waste stabilisation ponds (WSPs) effluent. Since CW design considers temperature which is irrelevant in tropics, mass transfer approach could improve the design. HSSF-CWs were operated in batch recycle mode as continuous stirred tank reactors (CSTR) at different interstitial velocities. The overall removal rate constants of chemical oxygen demand (COD) at various interstitial velocities were evaluated in mesocosms that received pretreated domestic wastewater. The mean overall removal rate constants were 0.43, 0.69, 0.74 and 0.73 d-1 corresponding to interstitial velocities of 15.43, 36, 56.57 and 72 md-1, respectively. Results showed that the interstitial velocities up to 36 md-1 represented a range where mass transfer effect was significant and, above it, insignificant to the COD removal process. Since WSPs effluent has high flow rates and low organic load, it is possible to induce high interstitial velocities in a HSSF-CW treating this effluent, without clogging and overflow. The performance of these HSSF for tertiary treatment in tropical areas could be improved by considering flow velocity when designing.


Assuntos
Lagoas , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Águas Residuárias
18.
Langmuir ; 33(16): 4066-4075, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28368615

RESUMO

Total internal reflection fluorescence (TIRF) microscopy was used to investigate initial attachment and stability of wild-type, curli-deficient (ΔcsgA), flagella-deficient (ΔflhDC), and type-1 fimbriae-deficient (Δfim) mutant E. coli strains. Suspended bacteria were injected into a flow cell where they deposited on a silica coverslip, and images were acquired over a 2 min period. TIRF microscope image analysis revealed that curli- and flagella-deficient mutants attached closer to the surface and required a longer time to find their equilibrium position (i.e., bond maturation) as compared to the wild-type and fimbriae-deficient mutants. Analysis of the change in bacterial surface area over the 2 min period also indicated that curli- and flagella-deficient mutants have less initial stability than the wild-type and fimbriae-deficient mutants, evidenced by their fluctuating position at equilibrium. TIRF observations at the microscopic level were complemented macroscopically using quartz crystal microbalance with dissipation (QCM-D) and sand-packed column experiments, which support the distinctive behavior observed at the microscopic scale. For each mutant strain, as fluorescence intensity increased in TIRF, the negative frequency shift in QCM-D (related to the attached mass of bacteria) also increased. Packed-column experiments indicated that curli- and flagella-deficient mutants exhibited a characteristically different attachment behavior and more retention as compared to the wild-type and fimbriae-deficient strains. This study utilized a new approach to understand bacterial attachment/detachment and provides new insights into the role of various appendages on initial attachment and stability.

19.
Environ Sci Technol ; 51(11): 6202-6210, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28488850

RESUMO

Two kinds of isocyanate were used to modify graphene oxide (GO) samples. Then, polyimide (PI) hybrid membranes containing GO and modified GO were prepared by in situ polymerization. The permeation of CO2 and N2 was studied using these novel membranes. The morphology experiments showed that the isocyanate groups were successfully grafted on the surface of GO by replacement of the oxygen-containing functional groups. After modification, the surface polarity of the GO increased, and more defect structures were introduced into the GO surface. This resulted in a good distribution of more modified GO samples in the PI polymer matrix. Thus, the PI hybrid membranes incorporated by modified GO samples showed a high gas permeability and ideal selectivity of membranes. In addition, enhancement of the selectivity due to the solubility of CO2 played a major role in the increase in the separation performance of the hybrid membranes for CO2, although the diffusion coefficients for CO2 also increased. Both the higher condensability and the strong affinity between CO2 molecules and GO in the polymer matrix caused an enhancement of the solubility selectivity higher than the diffusion selectivity after GO surface modification.


Assuntos
Dióxido de Carbono , Grafite , Membranas Artificiais , Óxidos , Polimerização , Polímeros
20.
Environ Sci Technol ; 49(13): 8004-11, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26024066

RESUMO

Polyurethane hybrid membranes containing graphene oxide (GO) with different morphologies were prepared by in situ polymerization. The separation of CO2/N2 gas mixtures was studied using these novel membranes. The results from the morphology characterization of GO samples indicated that the oxidation process in the improved Hummers method introduced oxygenated functional groups into graphite, making graphite powder exfoliate into GO nanosheets. The surface defects on the GO sheets increased when oxidation increased due to the introduction of more oxygenated functional groups. Both the increase in oxygenated functional groups on the GO surface and the decrease in the number of GO layers leads to a better distribution of GO in the polymer matrix, increasing thermal stability and gas separation performance of membranes. The addition of excess oxidant destroyed the structure of GO sheets and forms structural defects, which depressed the separation performance of membranes. The hybrid membranes containing well-distributed GO showed higher permeability and permeability selectivity for the CO2. The formation of GO aggregates in the hybrid membranes depressed the membrane performance at a high content of GO.


Assuntos
Dióxido de Carbono/isolamento & purificação , Fracionamento Químico/instrumentação , Grafite/química , Membranas Artificiais , Nitrogênio/isolamento & purificação , Fracionamento Químico/métodos , Desenho de Equipamento , Oxirredução , Óxidos/química , Permeabilidade , Polimerização , Poliuretanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA