Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Orig Life Evol Biosph ; 42(4): 275-94, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22562476

RESUMO

An important constraint on the formation of the building blocks of life in the Hadean is the availability of small, activated compounds such as ammonia (NH(3)) relative to its inert dinitrogen source. Iron-sulfur particles and/or mineral surfaces have been implicated to provide the catalytic active sites for the reduction of dinitrogen. Here we provide a combined kinetic, spectroscopic, and computational modeling study for an alternative source of ammonia from water soluble nitrogen oxide ions. The adsorption of aqueous nitrite (NO(2)(-)) and nitrate (NO(3)(-)) on pyrite (FeS(2)) and subsequent reduction chemistry to ammonia was investigated at 22°C, 70°C, and 120°C. Batch geochemical and in situ Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) spectroscopy experiments were used to determine the reduction kinetics to NH(3) and to elucidate the identity of the surface complexes, respectively, during the reaction chemistry of NO(2)(-) and NO(3)(-). Density functional theory (DFT) calculations aided the interpretation of the vibrational data for a representative set of surface species. Under the experimental conditions used in this study, we detected the adsorption of nitric oxide (NO) intermediate on the pyrite surface. NH(3) production from NO(2)(-) occurred at 70 and 120°C and from NO(3)(-) occurred only at 120°C.


Assuntos
Ferro/química , Nitratos/química , Nitritos/química , Compostos de Amônio Quaternário/química , Sulfetos/química , Adsorção , Biologia Computacional/métodos , Simulação por Computador , Cinética , Modelos Químicos , Óxido Nítrico/química , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
2.
Proc Natl Acad Sci U S A ; 106(45): 18908-13, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19864626

RESUMO

Driven by the depletion of crude oil, the direct oxidation of methane to methanol has been of considerable interest. Promising low-temperature activity of an oxygen-activated zeolite, Cu-ZSM-5, has recently been reported in this selective oxidation and the active site in this reaction correlates with an absorption feature at 22,700 cm(-1). In the present study, this absorption band is used to selectively resonance enhance Raman vibrations of this active site. (18)O(2) labeling experiments allow definitive assignment of the observed vibrations and exclude all previously characterized copper-oxygen species for the active site. In combination with DFT and normal coordinate analysis calculations, the oxygen activated Cu core is uniquely defined as a bent mono-(mu-oxo)dicupric site. Spectroscopically validated electronic structure calculations show polarization of the low-lying singly-occupied molecular orbital of the [Cu(2)O](2+) core, which is directed into the zeolite channel, upon approach of CH(4). This induces significant oxyl character into the bridging O atom leading to a low transition state energy consistent with experiment and explains why the bent mono-(mu-oxo)dicupric core is highly activated for H atom abstraction from CH(4). The oxygen intermediate of Cu-ZSM-5 is now the most well defined species active in the methane monooxygenase reaction.


Assuntos
Cobre/química , Metano/química , Metanol/síntese química , Zeolitas/química , Catálise , Modelos Moleculares , Estrutura Molecular , Oxirredução , Oxigênio/química , Análise Espectral
3.
Int J Health Serv ; 41(1): 95-115, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21319723

RESUMO

The catastrophic H1N1 pandemic of 1918, which killed tens of millions, is now legendary, and influenza policy has centered on preventing another such disaster. There is reason for concern about influenza A. It can rapidly alter its genetic makeup to increase virulence and can jump from other species to humans. Nonetheless, ignorance about influenza in 1918, the lack of effective vaccines or antibacterial and antiviral drugs, and the social disruption caused by World War I also contributed heavily to the lethality, and it is unlikely that influenza of similar destructiveness will recur. The stupefying publicity over the threat of influenza has been generated partly by those, such as the pharmaceutical industry and influenza researchers, who benefit from the increased expenditures the publicity provokes. It is, in effect, disease mongering, the promotion of disease or dread of disease for one's own gain. Huge expenditures on influenza preparedness have produced little demonstrable benefit and some harm, independent of the wasted resources. Disease mongering, including spreading fear of influenza, is widespread and unhealthy and should be vigorously opposed.


Assuntos
Conflito de Interesses , Epidemias , Medo , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/epidemiologia , Má Conduta Profissional , Indústria Farmacêutica , Humanos , Política , Pesquisadores , Estados Unidos
4.
Inorg Chem ; 49(19): 8873-85, 2010 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-20822156

RESUMO

To better understand the effect of thioether coordination in copper-O(2) chemistry, the tetradentate N(3)S ligand L(ASM) (2-(methylthio)-N,N-bis((pyridin-2-yl)methyl)benzenamine) and related alkylether ligand L(EOE) (2-ethoxy-N,N-bis((pyridin-2-yl)methyl)ethanamine) have been studied. The corresponding copper(I) complexes, [(L(ASM))Cu(I)](+) (1a) and [(L(EOE))Cu(I)](+) (3a), were studied as were the related compound [(L(ESE))Cu(I)](+) (2a, L(ESE) = (2-ethylthio-N,N-bis((pyridin-2-yl)methyl)ethanamine). The X-ray structure of 1a and its solution conductivity reveal a monomeric molecular structure possessing thioether coordination which persists in solution. In contrast, the C-O stretching frequencies of the derivative Cu(I)-CO complexes reveal that for these complexes, the modulated ligand arms, whether arylthioether, alkylthioether, or ether, are not coordinated to the cuprous ion. Electrochemical data for 1a and 2a in CH(3)CN and N,N-dimethylformamide (DMF) show the thioanisole moiety to be a poor electron donor compared to alkylthioether (1a is ∼200 mV more positive than 2a). The structures of [(L(ASM))Cu(II)(CH(3)OH)](2+) (1c) and [(L(ESE))Cu(II)(CH(3)OH)](2+) (2c) have also been obtained and indicate nearly identical copper coordination environments. Oxygenation of 1a at reduced temperature gives a characteristic deep blue intermediate [{(L(ASM))Cu(II)}(2)(O(2)(2-))](2+) (1b(P)) with absorption features at 442 (1,500 M(-1) cm(-1)), 530 (8,600 M(-1) cm(-1)), and 605 nm (10,400 M(-1) cm(-1)); these values compare well to the ligand-to-metal charge-transfer (LMCT) transitions previously reported for [{(L(ESE))Cu(II)}(2)(O(2)(2-))](2+) (2b(P)). Resonance Raman data for [{(L(ASM))Cu(II)}(2)(O(2)(2-))](2+) (1b(P)) support the formation of µ-1,2-peroxo species ν(O-O) = 828 cm(-1)(Δ((18)O(2)) = 48), ν(sym)(Cu-O) = 547 cm(-1) (Δ((18)O(2)) = 23), and ν(asym)(Cu-O) = 497 cm(-1) (Δ((18)O(2)) = 22) and suggest the L(ASM) ligand is a poorer electron donor to copper than is L(ESE). In contrast, the oxygenation of [(L(EOE))Cu(I)](+) (3a), possessing an ether donor as an analogue of the thioether in L(ESE), led to the formation of a bis(µ-oxo) species [{(L(EOE))Cu(III)}(2)(O(2-))(2)](2+) (3b(O); 380 nm, ε ∼ 10,000 M(-1) cm(-1)). This result provides further support for the sulfur influence in 1b(P) and 2b(P), in particular coordination of the sulfur to the Cu. Thermal decomposition of 1b(P) is accompanied by ligand sulfoxidation. The structure of [{(L(EOE))Cu(II)(Cl)}(2)](+) (3c) generated from the reductive dehalogenation of organic chlorides suggests that the ether moiety is weakly bound to the cupric ion. A detailed discussion of the spectroscopic and structural characteristics of 1b(P), 2b(P), and 3b(O) is presented.


Assuntos
Cobre/química , Compostos Organometálicos/química , Oxigênio/química , Peróxidos/química , Piridinas/química , Sulfetos/química , Enxofre/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Estereoisomerismo
5.
J Am Chem Soc ; 131(9): 3230-45, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19216527

RESUMO

With an anisole-containing polypyridylamine potential tetradentate ligand (O)L, a mu-1,2-peroxo-dicopper(II) complex [{(O)LCu(II)}(2)(O(2)(2-))](2+) forms from the reaction of the mononuclear compound [Cu(I)((O)L)(MeCN)]B(C(6)F(5))(4) ((O)LCu(I)) with O(2) in noncoordinating solvents at -80 degrees C. Thermal decay of this peroxo complex in the presence of toluene or ethylbenzene leads to rarely seen C-H activation chemistry; benzaldehyde and acetophenone/1-phenylethanol mixtures, respectively, are formed. Experiments with (18)O(2) confirm that the oxygen source in the products is molecular O(2) and deuterium labeling experiments indicate k(H)/k(D) = 7.5 +/- 1 for the toluene oxygenation. The O(2)-reaction of [Cu(I)((Bz)L)(CH(3)CN)](+) ((Bz)LCu(I)) leads to a dicopper(III)-bis-mu-oxo species [{(Bz)LCu(III)}(2)(mu-O(2-))(2)](2+) at -80 degrees C, and from such solutions, very similar toluene oxygenation chemistry occurs. Ligand (Bz)L is a tridentate chelate, possessing the same moiety found in (O)L, but without the anisole O-atom donor. In these contexts, the nature of the oxidant species in or derived from [{(O)LCu(II)}(2)(O(2)(2-))](2+) is discussed and likely mechanisms of reaction initiated by toluene H-atom abstraction chemistry are detailed. To confirm the structural formulations of the dioxygen-adducts, UV-vis and resonance Raman spectroscopic studies have been carried out and these results are reported and compared to previously described systems including [{Cu(II)((Py)L)}(2)(O(2))](2+) ((Py)L = TMPA = tris(2-methylpyridyl)amine). Using (L)Cu(I), CO-binding properties (i.e., nu(C-O) values) along with electrochemical property comparisons, the relative donor abilities of (O)L, (Bz)L, and (Py)L are assessed.


Assuntos
Derivados de Benzeno/química , Cobre/química , Compostos Organometálicos/química , Oxigênio/química , Tolueno/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredução
6.
J Am Chem Soc ; 131(18): 6421-38, 2009 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-19368383

RESUMO

The mu-eta(2):eta(2)-peroxodicopper(II) complex synthesized by reacting the Cu(I) complex of the bis-diamine ligand N,N'-di-tert-butyl-ethylenediamine (DBED) with O(2) is a functional and spectroscopic model of the coupled binuclear copper protein tyrosinase. This complex reacts with 2,4-di-tert-butylphenolate at low temperature to produce a mixture of the catechol and quinone products, which proceeds through three intermediates (A-C) that have been characterized. A, stabilized at 153 K, is characterized as a phenolate-bonded bis-mu-oxo dicopper(III) species, which proceeds at 193 K to B, presumably a catecholate-bridged coupled bis-copper(II) species via an electrophilic aromatic substitution mechanism wherein aromatic ring distortion is the rate-limiting step. Isotopic labeling shows that the oxygen inserted into the aromatic substrate during hydroxylation derives from dioxygen, and a late-stage ortho-H(+) transfer to an exogenous base is associated with C-O bond formation. Addition of a proton to B produces C, determined from resonance Raman spectra to be a Cu(II)-semiquinone complex. The formation of C (the oxidation of catecholate and reduction to Cu(I)) is governed by the protonation state of the distal bridging oxygen ligand of B. Parallels and contrasts are drawn between the spectroscopically and computationally supported mechanism of the DBED system, presented here, and the experimentally derived mechanism of the coupled binuclear copper protein tyrosinase.


Assuntos
Modelos Moleculares , Monofenol Mono-Oxigenase/química , Compostos Organometálicos/química , Cobre/química , Diaminas/química , Ligantes , Oxigênio/química , Análise Espectral
7.
Inorg Chem ; 48(23): 11297-309, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19886646

RESUMO

Cuprous and cupric complexes with the new imidazolyl containing tripodal tetradentate ligands {L(MIm), (1H-imidazol-4-yl)-N,N-bis((pyridin-2-yl)methyl)methanamine, and L(EIm), 2-(1H-imidazol-4-yl)-N,N-bis((pyridin-2-yl)methyl)ethanamine}, have been investigated to probe differences in their chemistry, especially in copper(I)-dioxygen chemistry, compared to that already known for the pyridyl analogue TMPA, tris(2-pyridyl)methyl)amine. Infrared (IR) stretching frequencies obtained from carbon monoxide adducts of [(L(MIm))Cu(I)](+) (1a) and [(L(EIm))Cu(I)](+) (2a) show that the imidazolyl donor is stronger than its pyridyl analogue. Electrochemical data suggest differences in the binding constant of Cu(II) to L(EIm) compared to TMPA and L(MIm), reflecting geometric changes. Oxygenation of [(L(MIm))Cu(I)](+) (1a) in 2-methyltetrahydrofuran (MeTHF) solvent at -128 degrees C leads to an intensely purple colored species with a UV-vis spectrum characteristic of an end-on bound peroxodicopper(II) complex [{(L(MIm))Cu(II)}(2)(mu-1,2-O(2)(2-))](2+) (1b(P)) {lambda(max) = 528 nm}, very similar to the previously well characterized complex [{(TMPA)Cu(II)}(2)(mu-1,2-O(2)(2-))](2+) {lambda(max) = 520 nm (epsilon = 12 000 M(-1) cm(-1)), in MeTHF; resonance Raman (rR) spectroscopy: nu(O-O) = 832 (Delta((18)O(2)) = -44) cm(-1)}. In the low-temperature oxygenation of 2a, benchtop (-128 degrees C) and stopped-flow (-90 degrees C) experiments reveal the formation of an initial superoxo-Cu(II) species [(L(EIm))Cu(II)(O(2)(*-))](+) (2b(S)), lambda(max) = 431 nm in THF) . This converts to the low-temperature stable peroxo complex [{(L(EIm))Cu(II)}(2)(mu-1,2-O(2)(2-))](2+) (2b(P)) {rR spectroscopy: nu(O-O) = 822 (Delta((18)O(2)) = -46) cm(-1)}. Complex 2b(P) possess distinctly reduced Cu-O and O-O stretching frequencies and a red-shifted UV-vis feature {to lambda(max) = 535 nm (epsilon = 11 000 M(-1) cm(-1))} compared to the TMPA analogue due to a distortion from trigonal bipyramidal (TBP) to a square pyramidal ligand field. This distortion is supported by the structural characterization of related ligand-copper(II) complexes: A stable tetramer cluster complex [(mu(2)-L(EIm-))(4)(Cu(II))(4)](4+), obtained from thermal decomposition of 2b(P) (with formation of H(2)O(2)), also exhibits a distorted square pyramidal Cu(II) ion geometry as does the copper(II) complex [(L(EIm))Cu(II)(CH(3)CN)](2+) (2c), characterized by X-ray crystallography and solution electron paramagnetic resonance (EPR) spectroscopy.


Assuntos
Cobre/química , Imidazóis/química , Compostos Organometálicos/química , Oxigênio/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Molecular
8.
J Int Assoc Provid AIDS Care ; 18: 2325958218821961, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30798671

RESUMO

Molecular studies suggest that HIV arose in Africa between 1880 and 1940. During this period, there were campaigns by European colonial governments that involved unsterile injections of large numbers of Africans. That, along with other unsafe therapeutic interventions, may have propelled the evolution of HIV from SIV. Since subtype B in Africa may have been concentrated in white African homosexuals, it is possible that Westerners rather than Haitians introduced the virus to the New World. Amplification of HIV subtype B took place in Haiti, where transmission was facilitated by hazardous medical procedures including plasmapheresis. Representations in the media, however, largely ignore Western contributions to the spread of AIDS. This article focuses on the value of alternative narratives in fostering a balanced view that is less stigmatizing on developing nations.


Assuntos
Colonialismo , Países em Desenvolvimento , Infecções por HIV/etiologia , Infecções por HIV/transmissão , Serviços de Saúde/normas , Doença Iatrogênica , África Subsaariana , Transfusão de Sangue , Cuba , Contaminação de Equipamentos , Europa (Continente) , Evolução Molecular , Feminino , HIV-1/genética , Haiti , Serviços de Saúde/estatística & dados numéricos , Humanos , Masculino , Comportamento Sexual , Vírus da Imunodeficiência Símia/genética
9.
J Am Chem Soc ; 130(48): 16262-73, 2008 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-18998639

RESUMO

A combination of spectroscopies and DFT calculations have been used to define the electronic structures of two crystallographically defined Cu(II)-phenolate complexes. These complexes differ in the orientation of the phenolate ring which results in different bonding interactions of the phenolate donor orbitals with the Cu(II), which are reflected in the very different spectroscopic properties of the two complexes. These differences in electronic structures lead to significant differences in DFT calculated reactivities with oxygen. These calculations suggest that oxygen activation via a Cu(I) phenoxyl ligand-to-metal charge transfer complex is highly endergonic (>50 kcal/mol), hence an unlikely pathway. Rather, the two-electron oxidation of the phenolate forming a bridging Cu(II) peroxoquinone complex is more favorable (11.3 kcal/mol). The role of the oxidized metal in mediating this two-electron oxidation of the coordinated phenolate and its relevance to the biogenesis of the covalently bound topa quinone in amine oxidase are discussed.


Assuntos
Cobre/química , Elétrons , Hidroxibenzoatos/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Conformação Molecular , Oxigênio/química , Análise Espectral Raman , Fatores de Tempo
10.
Clin Toxicol (Phila) ; 45(7): 753-62, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17852160

RESUMO

INTRODUCTION: Recent reports of bisphosphonate-associated jaw osteonecrosis are reminiscent of earlier incidents in which a comparable syndrome was caused by occupational exposure to white phosphorus or radium. Osteonecrosis of the jaw is also caused by an inherited disease: osteopetrosis. This review analyzes the biomedical and social aspects of these four situations associated with jaw osteonecrosis. RESULTS: Clinical evidence is contradictory but suggests aminobisphosphonates cause rare cases of jaw necrosis. In addition to jaw problems, generalized skeletal defects characterize osteopetrosis and exposure to phosphorus or radium and there is evidence of decreased bone resorption in these conditions and with bisphosphonate therapy. CONCLUSION: Bisphosphonate-induced jaw necrosis appears to be an on-target toxicity as the same mechanism, inhibition bone resorption, probably underlies both the therapeutic and adverse effects. Since bisphosphonates are retained for long periods by bone the theoretical potential for skeletal toxicity is increased by using higher doses of potent aminobisphosphonates administered less frequently.


Assuntos
Difosfonatos/efeitos adversos , Doenças Maxilomandibulares/induzido quimicamente , Osteonecrose/induzido quimicamente , Osteopetrose/patologia , Fósforo/efeitos adversos , Lesões por Radiação/etiologia , Rádio (Elemento)/efeitos adversos , Animais , Reabsorção Óssea , Modelos Animais de Doenças , Cães , Humanos , Doenças Maxilomandibulares/patologia , Osteonecrose/patologia , Lesões por Radiação/patologia
11.
Inorg Chem ; 37(26): 6858-6873, 1998 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-11670823

RESUMO

The nature of the skeletal vibrational modes of complexes of the type M(2)(C&tbd1;CR)(4)(PMe(3))(4) (M = Mo, W; R = H, Me, Bu(t)(), SiMe(3)) has been deduced. Metrical data from X-ray crystallographic studies of Mo(2)(C&tbd1;CR)(4)(PMe(3))(4) (R = Me, Bu(t)(), SiMe(3)) and W(2)(C&tbd1;CMe)(4)(PMe(3))(4) reveal that the core bond distances and angles are within normal ranges and do not differ in a statistically significant way as a function of the alkynyl substituent, indicating that their associated force constants should be similarly invariant among these compounds. The crystal structures of Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) and Mo(2)(C&tbd1;CBu(t)())(4)(PMe(3))(4) are complicated by 3-fold disorder of the Mo(2) unit within apparently ordered ligand arrays. Resonance-Raman spectra ((1)(delta-->delta) excitation, THF solution) of Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) and its isotopomers (PMe(3)-d(9), C&tbd1;CSiMe(3)-d(9), (13)C&tbd1;(13)CSiMe(3)) exhibit resonance-enhanced bands due to a(1)-symmetry fundamentals (nu(a) = 362, nu(b) = 397, nu(c) = 254 cm(-)(1) for the natural-abundance complex) and their overtones and combinations. The frequencies and relative intensities of the fundamentals are highly sensitive to isotopic substitution of the C&tbd1;CSiMe(3) ligands, but are insensitive to deuteration of the PMe(3) ligands. Nonresonance-Raman spectra (FT-Raman, 1064 nm excitation, crystalline samples) for the Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) compounds and for Mo(2)(C&tbd1;CR)(4)(PMe(3))(4) (R = H, D, Me, Bu(t)(), SiMe(3)) and W(2)(C&tbd1;CMe)(4)(PMe(3))(4) exhibit nu(a), nu(b), and nu(c) and numerous bands due to alkynyl- and phosphine-localized modes, the latter of which are assigned by comparisons to FT-Raman spectra of Mo(2)X(4)L(4) (X = Cl, Br, I; L = PMe(3), PMe(3)-d(9))(4) and Mo(2)Cl(4)(AsMe(3))(4). Valence force-field normal-coordinate calculations on the model compound Mo(2)(C&tbd1;CH)(4)P(4), using core force constants transferred from a calculation on Mo(2)Cl(4)P(4), show that nu(a), nu(b), and nu(c) arise from modes of strongly mixed nu(Mo(2)), nu(MoC), and lambda(MoCC) character. The relative intensities of the resonance-Raman bands due to nu(a), nu(b), and nu(c) reflect, at least in part, their nu(M(2)) character. In contrast, the force field shows that mixing of nu(M(2)) and nu(C&tbd1;C) is negligible. The three-mode mixing is expected to be a general feature for quadruply bonded complexes with unsaturated ligands.

12.
Am J Pharm Educ ; 75(1): 4, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21451756

RESUMO

OBJECTIVE: To implement a Spanish language and culture initiative in a doctor of pharmacy (PharmD) curriculum that would improve students' Spanish language skills and cultural competence so that graduates could provide competent pharmaceutical care to Spanish-speaking patients. DESIGN: Five elective courses were created and introduced to the curriculum including 2 medical Spanish courses; a medical Spanish service-learning course; a 2-week Spanish language and cultural immersion trip to Mexico; and an advanced practice pharmacy experience (APPE) at a medical care clinic serving a high percentage of Spanish-speaking patients. Advisors placed increased emphasis on encouraging pharmacy students to complete a major or minor in Spanish. ASSESSMENT: Enrollment in the Spanish language courses and the cultural immersion trip has been strong. Twenty-three students have completed the APPE at a Spanish-speaking clinic. Eleven percent of 2010 Butler University pharmacy graduates completed a major or minor in Spanish compared to approximately 1% in 2004 when the initiative began. CONCLUSION: A Spanish language and culture initiative started in 2004 has resulted in increased Spanish language and cultural competence among pharmacy students and recent graduates.


Assuntos
Competência Cultural/educação , Educação em Farmácia/métodos , Idioma , Estudantes de Farmácia , Competência Clínica , Currículo , Hispânico ou Latino , Humanos , Indiana
13.
J Am Chem Soc ; 129(28): 8882-92, 2007 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-17592845

RESUMO

Elemental sulfur (S8) reacts reversibly with the copper(I) complex [(TMPA')CuI](+) (1), where TMPA' is a TMPA (tris(2-pyridylmethyl)amine) analogue with a 6-CH2OCH3 substituent on one pyridyl ligand arm, affording a spectroscopically pure end-on bound disulfido-dicopper(II) complex [{(TMPA')Cu(II)}2(mu-1,2-S2(2-))](2+) (2) {nu(S-S) = 492 cm(-1); nu(Cu-S)sym = 309 cm(-1)}; by contrast, [(TMPA)Cu(I)(CH3CN)](+) (3)/S8 chemistry produces an equilibrium mixture of at least three complexes. The reaction of excess PPh3 with 2 leads to formal "release" of zerovalent sulfur and reduction of copper ion to give the corresponding complex [(TMPA')Cu(I)(PPh3)](+) (11) along with S=PPh3 as products. Dioxygen displaces the disulfur moiety from 2 to produce the end-on Cu2O2 complex, [{(TMPA')Cu(II)}2(mu-1,2-O2(2-)](2+) (9). Addition of the tetradentate ligand TMPA to 2 generates the apparently more thermodynamically stable [{(TMPA)Cu(II)}2(mu-1,2-S2(2-))](2+) (4) and expected mixture of other species. Bubbling 2 with CO leads to the formation of the carbonyl adduct [(TMPA')CuI(CO)](+) (8). Carbonylation/sulfur-release/CO-removal cycles can be repeated several times. Sulfur atom transfer from 2 also occurs in a near quantitative manner when it is treated with 2,6-dimethylphenyl isocyanide (ArNC), leading to the corresponding isothiocyanate (ArNCS) and [(TMPA')Cu(I)(CNAr)](+) (12). Complex 2 readily reacts with PhCH2Br: [{(TMPA')Cu(II)}2(mu-1,2-S(2)(2-)](2+) (2) + 2 PhCH2Br --> [{(TMPA')Cu(II)(Br)}2](2+) (6) + PhCH2SSCH2Ph. The unprecedented substrate reactivity studies reveal that end-on bound mu-1,2-disulfide-dicopper(II) complex 2 provides a nucleophilic S2(2-) moiety, in striking contrast to the electrophilic behavior of a recently described side-on bound mu-eta(2):eta(2)-disulfido-dicopper(II) complex, [{(N3)Cu(II)}(2)(mu-eta(2):eta(2)-S2(2-))](2+) (5) with tridentate N3 ligand. The investigation thus reveals striking analogies of copper/sulfur and copper/dioxygen chemistries, with regard to structure type formation and specific substrate reactivity patterns.


Assuntos
Cobre/química , Dissulfetos/síntese química , Enxofre/química , Poluição Ambiental/prevenção & controle , Óxidos de Nitrogênio
14.
Inorg Chem ; 46(15): 6056-68, 2007 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-17580938

RESUMO

In order to contribute to an understanding of the effects of thioether sulfur ligation in copper-O(2) reactivity, the tetradentate ligands L(N3S) (2-ethylthio-N,N-bis(pyridin-2-yl)methylethanamine) and L(N3S')(2-ethylthio-N,N-bis(pyridin-2-yl)ethylethanamine) have been synthesized. Corresponding copper(I) complexes, [CuI(L(N3S))]ClO(4) (1-ClO(4)), [CuI(L(N3S))]B(C(6)F(5))(4) (1-B(C(6)F(5))(4)), and [CuI(L(N3S'))]ClO(4) (2), were generated, and their redox properties, CO binding, and O(2)-reactivity were compared to the situation with analogous compounds having all nitrogen donor ligands, [CuI(TMPA)(MeCN)](+) and [Cu(I)(PMAP)](+) (TMPA = tris(2-pyridylmethyl)amine; PMAP = bis[2-(2-pyridyl)ethyl]-(2-pyridyl)methylamine). X-ray structures of 1-B(C(6)F(5))(4), a dimer, and copper(II) complex [Cu(II)(L(N3S))(MeOH)](ClO(4))(2) (3) were obtained; the latter possesses axial thioether coordination. At low temperature in CH(2)Cl(2), acetone, or 2-methyltetrahydrofuran (MeTHF), 1 reacts with O(2) and generates an adduct formulated as an end-on peroxodicopper(II) complex [{Cu(II)(L(N3S))}(2)(mu-1,2-O(2)(2-))](2+) (4)){lambda(max) = 530 (epsilon approximately 9200 M(-1) cm(-1)) and 605 nm (epsilon approximately 11,800 M(-1) cm(-1))}; the number and relative intensity of LMCT UV-vis bands vary from those for [{Cu(II)(TMPA)}(2)(O(2)(2-))](2+) {lambda(max) = 524 nm (epsilon = 11,300 M(-1) cm(-1)) and 615 nm (epsilon = 5800 M(-1) cm(-1))} and are ascribed to electronic structure variation due to coordination geometry changes with the L(N3S) ligand. Resonance Raman spectroscopy confirms the end-on peroxo-formulation {nu(O-O) = 817 cm(-1) (16-18O(2) Delta = 46 cm(-1)) and nu(Cu-O) = 545 cm(-1) (16-18O(2) Delta = 26 cm(-1)); these values are lower in energy than those for [{Cu(II)(TMPA)}(2)(O(2)(2-))](2+) {nu(Cu-O) = 561 cm(-1) and nu(O-O) = 827 cm(-1)} and can be attributed to less electron density donation from the peroxide pi* orbitals to the Cu(II) ion. Complex 4 is the first copper-dioxygen adduct with thioether ligation; direct evidence comes from EXAFS spectroscopy {Cu K-edge; Cu-S = 2.4 Angstrom}. Following a [Cu(I)(L(N3S))](+)/O(2) reaction and warming, the L(N3S) thioether ligand is oxidized to the sulfoxide in a reaction modeling copper monooxygenase activity. By contrast, 2 is unreactive toward dioxygen probably due to its significantly increased Cu(II)/Cu(I) redox potential, an effect of ligand chelate ring size (in comparison to 1). Discussion of the relevance of the chemistry to copper enzyme O(2)-activation, and situations of biological stress involving methionine oxidation, is provided.


Assuntos
Cobre/química , Nitrogênio/química , Oxigênio/química , Sulfetos/química , Enxofre/química , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Ligantes , Metionina/química , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Espectrofotometria/métodos , Raios Ultravioleta
15.
Inorg Chem ; 45(7): 3004-13, 2006 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-16562956

RESUMO

The variation of ligand para substituents on pyridyl donor groups of tridentate amine copper(I) complexes was carried out in order to probe electronic effects on the equilibrium between mu-eta2:eta2-(side-on)-peroxo [Cu(II)2(O2(2-))]2+ and bis(mu-oxo) [Cu(III)2(O(2-))2] species formed upon reaction with O2. [Cu(I)(R-PYAN)(MeCN)n]B(C6F5)4 (R-PYAN = N-[2-(4-R-pyridin-2-yl)-ethyl]-N,N',N'-trimethyl-propane-1,3-diamine, R = NMe2, OMe, H, and Cl) (1R) vary over a narrow range in their Cu(II)/Cu(I) redox potentials (E(1/2) vs Fe(cp)2(+/0) = -0.40 V for 1(NMe2), -0.38 V for 1(OMe), -0.33 V for 1H, and -0.32 V for 1Cl) and in C-O stretching frequencies of their carbonyl adducts, 1R-CO: nu(C-O) = 2080, 2086, 2088, and 2090 cm(-1) for R = NMe2, OMe, H, and Cl, respectively. However, within this range of electronic properties for 1R, dioxygen reactivity is significantly affected. The reaction of 1Cl or 1H with O2 at -78 degrees C in CH2Cl2 gives UV-vis and resonance Raman spectra indicative of a mu-eta2:eta2-(side-on)-peroxo dicopper(II) adduct (2R). Compound 1(OMe) reacts with O2, yielding equilibrium mixtures of side-on peroxo (2(OMe)) and bis(mu-oxo) (3(OMe)) species. Oxygenation of 1(NMe2) leads to the sole generation of the bis(mu-oxo) dicopper(III) complex (3(NMe2)). A solvent effect was also observed; in acetone or THF, increased ratios of bis(mu-oxo) relative to side-on peroxo complex are observed. Thus, the equilibrium between a dicopper side-on peroxo and bis(mu-oxo) species can be tuned by ligand design-specifically, more electron donating ligands favor the formation of the latter isomer, and the peroxo/bis(mu-oxo) equilibrium can be shifted from one extreme to the other within the same ligand system. Observations concerning the reactivity of the dioxygen adducts 2H and 3(NMe2) toward external substrates are also presented.


Assuntos
Cobre/química , Compostos Organometálicos/química , Oxigênio/química , Monóxido de Carbono/química , Fenômenos Químicos , Físico-Química , Eletroquímica , Elétrons , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Sensibilidade e Especificidade , Análise Espectral Raman
16.
Inorg Chem ; 45(25): 10055-7, 2006 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-17140210

RESUMO

Employing a tetradentate N3S(thioether) ligand, LN3S, dioxygen reactivity of a copper(I) complex, [(LN3S)CuI]+ (1) was examined. In CH2Cl2, acetone (at -80 degrees C), or 2-methyltetrahydrofuran (at -128 degrees C), 1 reacts with O2 producing the end-on bound peroxodicopper(II) complex [{(LN3S)CuII}2(mu-1,2-O2(2-))]2+ (2), the first reported copper-dioxygen adduct with sulfur (thioether) ligation. Its absorption spectrum contains an additional low-energy feature (but not a Cu-S CT band) compared to the previously well-characterized N4 ligand complex, [{(TMPA)CuII}2(mu-1,2-O2(2-))]2+ (3) (TMPA = tris(2-pyridylmethyl)amine). Resonance Raman spectroscopy confirms the peroxo formulation {nu(O-O) = 817 cm-1 (16-18O2 Delta = 46 cm-1) and nu(Cu-O) = 545 cm-1 (16-18O2 Delta = 26 cm-1), in close analogy to that known for 3 {nu(O-O) = 827 cm-1 and nu(Cu-O) = 561 cm-1}. Direct evidence for thioether ligation comes from EXAFS spectroscopy {Cu K-edge; Cu-S = 2.4 A}.


Assuntos
Quelantes/química , Cobre/química , Oxigênio/química , Peróxidos/química , Sulfetos/química , Enxofre/química , Acetona/química , Furanos/química , Ligantes , Cloreto de Metileno/química , Piridinas/química , Análise Espectral , Temperatura
17.
J Am Chem Soc ; 128(8): 2654-65, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16492052

RESUMO

The activation of dioxygen (O(2)) by Cu(I) complexes is an important process in biological systems and industrial applications. In tyrosinase, a binuclear copper enzyme, a mu-eta(2):eta(2)-peroxodicopper(II) species is accepted generally to be the active oxidant. Reported here is the characterization and reactivity of a mu-eta(2):eta(2)-peroxodicopper(II) complex synthesized by reacting the Cu(I) complex of the secondary diamine ligand N,N'-di-tert-butyl-ethylenediamine (DBED), [(DBED)Cu(MeCN)](X) (1.X, X = CF(3)SO(3)(-), CH(3)SO(3)(-), SbF(6)(-), BF(4)(-)), with O(2) at 193 K to give [[Cu(DBED)](2)(O(2))](X)(2) (2.X(2)). The UV-vis and resonance Raman spectroscopic features of 2 vary with the counteranion employed yet are invariant with change of solvent. These results implicate an intimate interaction of the counteranions with the Cu(2)O(2) core. Such interactions are supported further by extended X-ray absorption fine structure (EXAFS) analyses of solutions that reveal weak copper-counteranion interactions. The accessibility of the Cu(2)O(2) core to exogenous ligands such as these counteranions is manifest further in the reactivity of 2 with externally added substrates. Most notable is the hydroxylation reactivity with phenolates to give catechol and quinone products. Thus the strategy of using simple bidentate ligands at low temperatures provides not only spectroscopic models of tyrosinase but also functional models.


Assuntos
Cobre/química , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Peróxidos/química , Sítios de Ligação , Cristalografia por Raios X , Diaminas/química , Ligantes , Modelos Moleculares , Oxigênio/química , Oxigênio/metabolismo , Espectrofotometria , Análise Espectral Raman
18.
J Am Chem Soc ; 127(44): 15360-1, 2005 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-16262386

RESUMO

A dicopper(I)/phenol-ligand complex in RCN solvents reacts with O2 producing a mu-1,1-hydroperoxo dicopper(II) species. Subsequent thermal transformation results in nitrile hydroxylation and elimination of cyanide, as revealed by the isolation in comparable yields of (i) a cyanide-bridged tetranuclear cluster complex and (ii) benzaldehyde (for R = PhCH2); 18O labeling confirms that the PhC(O)H oxygen atom derives from O2.


Assuntos
Cobre , Nitrilas/química , Biomimética , Peróxido de Hidrogênio , Hidroxilação
19.
Inorg Chem ; 41(25): 6583-96, 2002 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-12470053

RESUMO

Cobalt(II) porphyrins were studied to determine the influence of distal site metalation and superstructure upon dioxygen reactivity in active site models of cytochrome c oxidase (CcO). Monometallic, Co(II)(P) complexes when ligated by an axial imidazole react with dioxygen to form reversible Co-superoxide adducts, which were characterized by EPR and resonance Raman (RR). Unexpectedly, certain Co porphyrins with Cu(I) metalated imidazole pickets do not form mu-peroxo Co(III)/Cu(II) products even though the calculated intermetallic distance suggests this is possible. Instead, cobalt-porphyrin-superoxide complexes are obtained with the distal copper remaining as Cu(I). Moreover, distal metals (Cu(I) or Zn(II)) greatly enhance the stability of the dioxygen adduct, such that Co superoxides of bimetallic complexes demonstrate minimal reversibility. The "trapping" of dioxygen by a second metal is attributed to structural and electrostatic changes within the distal pocket upon metalation. EPR evidence suggests that the terminal oxygen in these bimetallic Co-superoxide systems is H-bonded to the NH of an imidazole picket amide linker, which may contribute to enthalpic stabilization of the dioxygen adduct. Stabilization of the dioxygen adduct in these bimetallic systems suggests one possible role for the distal copper in the Fe/Cu bimetallic active site of terminal oxidases, which form a heme-superoxide/copper(I) adduct upon oxygenation.


Assuntos
Cobalto/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Metaloporfirinas/síntese química , Sítios de Ligação , Catálise , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Oxirredução , Oxigênio/química , Análise Espectral Raman
20.
J Am Chem Soc ; 125(17): 5186-92, 2003 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-12708870

RESUMO

The effect of endogenous donor strength on Cu(2)O(2) bonds was studied by electronically perturbing [[(R-TMPA)Cu(II)]](2)(O(2))](2+) and [[(R-MePY2)Cu](2)(O(2))](2+) (R = H, MeO, Me(2)N), which form the end-on mu-1,2 bound peroxide and an equilibrium mixture of side-on peroxo-dicopper(II) and bis-mu-oxo-dicopper(III) isomers, respectively. For [[(R-TMPA)Cu(II)](2)(O(2))](2+), nu(O-O) shifts from 827 to 822 to 812 cm(-1) and nu(Cu)(-)(O(sym)) shifts from 561 to 557 to 551 cm(-1), respectively, as R- varies from H to MeO to Me(2)N. Thus, increasing the N-donor strength to the copper decreases peroxide pi(sigma) donation to the copper, weakening the Cu-O and O-O bonds. A decrease in nu(Cu-O) of the bis-mu-oxo-dicopper(III) complex was also observed with increasing N-donor strength for the R-MePY2 ligand system. However, no change was observed for nu(O-O) of the side-on peroxo. This is attributed to a reduced charge donation from the peroxide pi(sigma) orbital with increased N-donor strength, which increases the negative charge on the peroxide and adversely affects the back-bonding from the Cu to the peroxide sigma orbital. However, an increase in the bis-mu-oxo-dicopper(III) isomer relative to side-on peroxo-dicopper(II) species is observed for R-MePY2 with R = H < MeO < Me(2)N. This effect is attributed to the thermodynamic stabilization of the bis-mu-oxo-dicopper(III) isomer relative to the side-on peroxo-dicopper(II) isomer by strong donor ligands. Thus, the side-on peroxo-dicopper(II)/bis-mu-oxo-dicopper(III) equilibrium can be controlled by electronic as well as steric effects.


Assuntos
Cobre/química , Compostos Organometálicos/química , Oxigênio/química , Aminas/química , Ligantes , Piridinas/química , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA