Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr ; 154(5): 1686-1698, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458577

RESUMO

BACKGROUND: In many low-income countries, iron deficiency (ID) and its anemia (IDA) pose significant health challenges, particularly among females and girls. Finding sustainable and effective solutions to address this issue is critical. OBJECTIVES: This study aimed to evaluate the efficacy of incorporating iron-fortified lentils (IFLs) into the diets of rural Bangladeshi adolescent girls on their body iron (Fe) status. METHODS: A community-based, double-blind, cluster-randomized controlled trial involved n = 1195 girls aged 10-17 y. A total of 48 adolescent clubs (n = ∼27 girls each) were randomized into 3 groups: 1) 200 g cooked IFLs, 2) 200 g cooked noniron-fortified lentils (NIFLs), and 3) a control group with no lentils (usual dietary intake). The intervention, administered 5 days a week for 85 feeding days, provided ∼8.625 mg Fe from each serving of IFLs and 2.625 mg from NIFLs. Blood samples collected at baseline, midpoint (42 feeding days), and endpoint (85 feeding days) assessed key Fe and inflammation biomarkers. Statistical analyses were filtered for inflammation. RESULTS: Although all groups experienced a decline in Fe status over time, the IFL group exhibited a significantly reduced decline in serum ferritin (sFer -7.2 µg/L), and total body iron (TBI -0.48 mg/kg) level compared with NIFL (sFer -14.3 µg/L and TBI -1.36 mg/kg) and usual intake group (sFer -12.8 µg/L and TBI -1.33 mg/kg). Additionally, those in the IFL group had a 57% reduced risk of developing clinical ID (sFer <15 µg/L) compared with the usual intake group. CONCLUSIONS: Our findings suggest that incorporating IFLs into the diet can help mitigate a decline in sFer, indicating a positive impact on the body Fe status of adolescent girls. This research underscores the potential role of fortified foods in addressing ID and IDA in vulnerable populations, emphasizing the significance of food-based interventions in public health. TRIAL REGISTRATION NUMBER: This trial was registered at the clinicaltrials.gov on May 24, 2018 (https://clinicaltrials.gov/study/NCT03516734?locStr=Bangladesh&country=Bangladesh&distance=50&cond=Anemia&intr=Iron%20fortified%20lentils&rank=1) as NCT03516734.


Assuntos
Anemia Ferropriva , Alimentos Fortificados , Lens (Planta) , Humanos , Feminino , Adolescente , Bangladesh/epidemiologia , Método Duplo-Cego , Criança , Anemia Ferropriva/prevenção & controle , Ferro/administração & dosagem , Ferro/sangue , Estado Nutricional , Ferritinas/sangue , Dieta , Ferro da Dieta/administração & dosagem
2.
Planta ; 257(4): 73, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864322

RESUMO

MAIN CONCLUSION: Stemphylium botryosum alters lentil secondary metabolism and differentially affects resistant and susceptible genotypes. Untargeted metabolomics identifies metabolites and their potential biosynthetic pathways that play a crucial role in resistance to S. botryosum. The molecular and metabolic processes that mediate resistance to stemphylium blight caused by Stemphylium botryosum Wallr. in lentil are largely unknown. Identifying metabolites and pathways associated with Stemphylium infection may provide valuable insights and novel targets to breed for enhanced resistance. The metabolic changes following infection of four lentil genotypes by S. botryosum were investigated by comprehensive untargeted metabolic profiling employing reversed-phase or hydrophilic interaction liquid chromatography (HILIC) coupled to a Q-Exactive mass spectrometer. At the pre-flowering stage, plants were inoculated with S. botryosum isolate SB19 spore suspension and leaf samples were collected at 24, 96 and 144 h post-inoculation (hpi). Mock-inoculated plants were used as negative controls. After analyte separation, high-resolution mass spectrometry data was acquired in positive and negative ionization modes. Multivariate modeling revealed significant treatment, genotype and hpi effects on metabolic profile changes that reflect lentil response to Stemphylium infection. In addition, univariate analyses highlighted numerous differentially accumulated metabolites. By contrasting the metabolic profiles of SB19-inoculated and mock-inoculated plants and among lentil genotypes, 840 pathogenesis-related metabolites were detected including seven S. botryosum phytotoxins. These metabolites included amino acids, sugars, fatty acids and flavonoids in primary and secondary metabolism. Metabolic pathway analysis revealed 11 significant pathways including flavonoid and phenylpropanoid biosynthesis, which were affected upon S. botryosum infection. This research contributes to ongoing efforts toward a comprehensive understanding of the regulation and reprogramming of lentil metabolism under biotic stress, which will provide targets for potential applications in breeding for enhanced disease resistance.


Assuntos
Alcaloides , Lens (Planta) , Melhoramento Vegetal , Metabolismo Secundário , Metabolômica
3.
Metabolomics ; 19(6): 52, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249718

RESUMO

INTRODUCTION: Faba bean (Vicia faba L.) flowers are edible and used as garnishes because of their aroma, sweet flavor and attractive colors. Anthocyanins are the common plant pigments that give flowers their vivid colors, whereas non-anthocyanin flavonoids can serve as co-pigments that can modify the color intensity of flowers. OBJECTIVES: To explore the polyphenol diversity and differences in standard and wing petals of faba bean flowers; and identify glycosylated flavonoids that contribute to flower color. METHODS: Flower standard and wing petals from 30 faba bean genotypes (eight color groups with a total of 60 samples) were used for polyphenol extraction. Samples were analyzed using a targeted method and a semi-untargeted analysis using liquid chromatography-high resolution mass spectrometry (LC-HRMS) combined with photodiode array (PDA) detection. Compound Discoverer software was used for polyphenol identification and multivariate analysis. RESULTS: The semi-untargeted analysis guided by the PDA detected 90 flavonoid metabolites present in faba bean flower petals. Ten anthocyanins largely influenced the flower colors, but other flavonoids (63 flavonols and 12 flavones) found with variable levels in different flower color groups appeared to also influence color, especially in mixed colors. CONCLUSION: Analysis of the different colored faba bean flowers confirmed that the color variation between the flowers was mainly controlled by anthocyanins in brown, red and purple-red flowers. Of the other flavonoids, multiglycosylated kaempferols were abundant in white and brown flowers, monoglycosylated kaempferols were common in red and purple-red flowers, and quercetin and apigenin glycosides were abundant co-pigments in purple-red flowers.


Assuntos
Flavonoides , Vicia faba , Flavonoides/análise , Antocianinas/análise , Antocianinas/química , Antocianinas/metabolismo , Vicia faba/metabolismo , Quempferóis/análise , Quempferóis/metabolismo , Metabolômica , Flores/metabolismo , Polifenóis/metabolismo
4.
Mol Breed ; 42(6): 35, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37312967

RESUMO

Chocolate spot (CS), caused by Botrytis fabae Sard., is an important threat to global faba bean production. Growing resistant faba bean cultivars is, therefore, paramount to preventing yield loss. To date, there have been no reported quantitative trait loci (QTL) associated with CS resistance in faba bean. The objective of this study was to identify genomic regions associated with CS resistance using a recombinant inbred line (RIL) population derived from resistant accession ILB 938. A total of 165 RILs from the cross Mélodie/2 × ILB 938/2 were genotyped and evaluated for CS reactions under replicated controlled climate conditions. The RIL population showed significant variation in response to CS resistance. QTL analysis identified five loci contributing to CS resistance on faba bean chromosomes 1 and 6, accounting for 28.4% and 12.5%, respectively, of the total phenotypic variance. The results of this study not only provide insight into disease-resistance QTL, but also can be used as potential targets for marker-assisted breeding in faba bean genetic improvement for CS resistance. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01307-7.

5.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500548

RESUMO

In this study, the comprehensive chemical characterization of red lentil hulls obtained from the industrial production of football and split lentils was described. The lentil hulls were rich in dietary fiber (78.43 g/100 g dry weight with an insoluble to soluble fiber ratio of 4:1) and polyphenols (49.3 mg GAE/g dry weight, of which 55% was bound phenolics), which revealed the suitability of this lentil by-product as a source of bioactive compounds with recognized antioxidant and prebiotic properties. The release of oligosaccharides and phenolic compounds was accomplished by enzymatic hydrolysis, microwave treatment and a combination of both technologies. The key role played by the selection of a suitable enzymatic preparation was highlighted to maximize the yield of bioactive compounds and the functional properties of the lentil hull hydrolysates. Out of seven commercial preparations, the one with the most potential for use in a commercial context was Pectinex® Ultra Tropical, which produced the highest yields of oligosaccharides (14 g/100 g lentil hull weight) and free phenolics (45.5 mg GAE/100 g lentil hull weight) and delivered a four-fold increase in terms of the original antioxidant activity. Finally, this enzyme was selected to analyze the effect of a microwave-assisted extraction pretreatment on the yield of enzymatic hydrolysis and the content of free phenolic compounds and oligosaccharides. The integrated microwave and enzymatic hydrolysis method, although it increased the solubilization yield of the lentil hulls (from 25% to 34%), it slightly decreased the content of oligosaccharides and proanthocyanidins and reduced the antioxidant activity. Therefore, the enzymatic hydrolysis treatment alone was more suitable for producing a lentil hull hydrolysate enriched in potential prebiotics and antioxidant compounds.


Assuntos
Lens (Planta) , Lens (Planta)/química , Antioxidantes/química , Fenóis/análise , Oligossacarídeos/química , Fibras na Dieta/análise , Prebióticos
6.
Ann Bot ; 128(4): 481-496, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34185828

RESUMO

BACKGROUND AND AIMS: Flowering time is important due to its roles in plant adaptation to different environments and subsequent formation of crop yield. Changes in light quality affect a range of developmental processes including flowering time, but little is known about light quality-induced flowering time control in lentil. This study aims to investigate the genetic basis for differences in flowering response to light quality in lentil. METHODS: We explored variation in flowering time caused by changes in red/far-red-related light quality environments of a lentil interspecific recombinant inbred line (RIL) population developed from a cross between Lens culinaris cv. Lupa and L. orientalis accession BGE 016880. A genetic linkage map was constructed and then used for identifying quantitative trait loci (QTLs) associated with flowering time regulation under different light quality environments. Differential gene expression analysis through transcriptomic study and RT-qPCR were used to identify potential candidate genes. KEY RESULTS: QTL mapping located 13 QTLs controlling flower time under different light quality environments, with phenotypic variance explained ranging from 1.7 to 62.9 %. Transcriptomic profiling and gene expression analysis for both parents of this interspecific RIL population identified flowering-related genes showing environment-specific differential expression (flowering DEGs). One of these, a member of the florigen gene family FTa1 (LcFTa1), was located close to three major QTLs. Furthermore, gene expression results suggested that two other florigen genes (LcFTb1 and LcFTb2), MADS-box transcription factors such as LcAGL6/13d, LcSVPb, LcSOC1b and LcFULb, as well as bHLH transcription factor LcPIF6 and Gibberellin 20 oxidase LcGA20oxC,G may also be involved in the light quality response. CONCLUSIONS: Our results show that a major component of flowering time sensitivity to light quality is tightly linked to LcFTa1 and associated with changes in its expression. This work provides a foundation for crop improvement of lentil with better adaptation to variable light environments.


Assuntos
Flores/fisiologia , Lens (Planta) , Luz , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Ligação Genética , Lens (Planta)/genética , Lens (Planta)/fisiologia , Fenótipo , Locos de Características Quantitativas , Transcriptoma
7.
Molecules ; 26(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201792

RESUMO

Pulse crop seed coats are a sustainable source of antioxidant polyphenols, but are typically treated as low-value products, partly because some polyphenols reduce iron bioavailability in humans. This study correlates antioxidant/iron chelation capabilities of diverse seed coat types from five major pulse crops (common bean, lentil, pea, chickpea and faba bean) with polyphenol composition using mass spectrometry. Untargeted metabolomics was used to identify key differences and a hierarchical analysis revealed that common beans had the most diverse polyphenol profiles among these pulse crops. The highest antioxidant capacities were found in seed coats of black bean and all tannin lentils, followed by maple pea, however, tannin lentils showed much lower iron chelation among these seed coats. Thus, tannin lentils are more desirable sources as natural antioxidants in food applications, whereas black bean and maple pea are more suitable sources for industrial applications. Regardless of pulse crop, proanthocyanidins were primary contributors to antioxidant capacity, and to a lesser extent, anthocyanins and flavan-3-ols, whereas glycosylated flavonols contributed minimally. Higher iron chelation was primarily attributed to proanthocyanidin composition, and also myricetin 3-O-glucoside in black bean. Seed coats having proanthocyanidins that are primarily prodelphinidins show higher iron chelation compared with those containing procyanidins and/or propelargonidins.


Assuntos
Antioxidantes/análise , Cicer/química , Quelantes de Ferro/química , Lens (Planta)/química , Metabolômica/métodos , Polifenóis/análise , Sementes/química , Vicia faba/química , Antioxidantes/química , Biflavonoides/análise , Disponibilidade Biológica , Catequina/análise , Correlação de Dados , Flavonoides/análise , Flavonóis/análise , Concentração Inibidora 50 , Espectrometria de Massas , Fenóis/análise , Proantocianidinas/análise , Taninos/análise
8.
Phytochem Anal ; 31(4): 458-471, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31869515

RESUMO

INTRODUCTION: Pulse crops are nutritious and therefore widely grown. Pulse seed coats are typically discarded, despite their high content of polyphenols that are known for their antioxidant properties and health benefits. A better understanding of polyphenol diversity and biochemical pathways will ultimately provide insight into how polyphenols are linked to health benefits, which will help to better utilise these seed coats. OBJECTIVES: To explore polyphenol profiles among seed coats of diverse genotypes of five pulse crops using a targeted liquid chromatography mass spectrometry (LC-MS) method. METHODS: Four genotypes of each of common bean, chickpea, pea, lentil and faba bean seed coats were selected for analysis. Following extraction, polyphenols were quantified using LC-MS. RESULTS: An LC-MS method was developed to quantify 98 polyphenols from 13 different classes in 30 min. The low-tannin seed coats had the lowest concentrations of all polyphenols. Chickpea and pea seed coats had the most similar polyphenolic profiles. The black common bean showed the most diverse seed coat polyphenol profile, including several anthocyanins not detected in any of the other seed coats. CONCLUSION: The LC-MS method reported herein was used to show polyphenol diversity within several polyphenol classes among the pulse crop seed coats. Detected in all seed coats, flavonols and hydroxybenzoic acids appear well-conserved in the edible Fabaceae. The presence of anthocyanins, flavan-3-ols and proanthocyanins in the coloured seed coats suggests that unique divergent branches were introduced in the flavonoid biosynthetic pathway, possibly in response to environmental stressors.


Assuntos
Polifenóis , Sementes , Cromatografia Líquida , Flavonoides , Espectrometria de Massas
9.
Environ Res ; 176: 108561, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31299617

RESUMO

Chronic arsenic (As) exposure is a major environmental threat to human health affecting >100 million people worldwide. Low blood selenium (Se) increases the risk of As-induced health problems. Our aim was to reduce As toxicity through a naturally Se-rich lentil diet. In a randomized, double-blind, placebo-control trial in Bangladesh, 405 participants chronically exposed to As were enrolled. The intervention arm (Se-group) consumed Se-rich lentils (55 µg Se/day); the control arm received lentils of similar nutrient profile except with low Se (1.5 µg Se/day). Anthropometric measurements, blood, urine and stool samples, were taken at baseline, 3 and 6 months; hair at baseline and 6 months after intervention. Morbidity data were collected fortnightly. Measurements included total As in all biological samples, As metabolites in urine, and total Se in blood and urine. Intervention with Se-rich lentils resulted in higher urinary As excretion (p = 0.001); increased body mass index (p ≤ 0.01), and lower incidence of asthma (p = 0.05) and allergy (p = 0.02) compared to the control group. The Se-group demonstrated increased excretion of urinary As metabolite, dimethylarsinic acid (DMA) at 6 months compared to control group (p = 0.008). Consuming Se-rich lentils can increase As excretion and improve the health indicators in the presence of continued As exposure.


Assuntos
Intoxicação por Arsênico/epidemiologia , Arsênio , Dieta/métodos , Lens (Planta)/química , Selênio/análise , Bangladesh/epidemiologia , Método Duplo-Cego , Humanos
10.
J Sci Food Agric ; 98(13): 5105-5111, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29611201

RESUMO

BACKGROUND: Faba bean (Vicia faba) vicine and convicine (V-C) aglycones (divicine and isouramil respectively) provoke an acute hemolytic anemia called favism in individuals with a glucose-6-phosphate dehydrogenase (G6PD) enzyme defect in their red blood cells. Geneticists/plant breeders are working with faba bean to decrease V-C levels to improve public acceptance of this high-protein pulse crop. Here, we present a fast and simple ex vivo in vitro bioassay for V-C toxicity testing of faba bean or faba bean food products. RESULTS: We have shown that 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU)-treated (i.e., sensitized) normal red blood cells, like G6PD-defective blood, displayed (i) continuous glutathione (GSH) depletion with no regeneration as incubation time and the dose of aglycones increased, (ii) progressive accumulation of denatured hemoglobin products into high molecular weight (HMW) proteins with increased aglycone dose, (iii) both band 3 membrane proteins and hemichromes, in HMW protein aggregates. We have also demonstrated that sensitized red blood cells can effectively differentiate various levels of toxicity among faba bean varieties through the two hemolysis biomarkers: GSH depletion and HMW clumping. CONCLUSION: BCNU-sensitized red blood cells provide an ideal model for favism blood, to assess and compare the toxicity of faba bean varieties and their food products. © 2018 Society of Chemical Industry.


Assuntos
Bioensaio/métodos , Glucosídeos/análise , Pirimidinonas/análise , Uridina/análogos & derivados , Vicia faba/química , Eritrócitos/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/enzimologia , Favismo/sangue , Favismo/enzimologia , Glucosefosfato Desidrogenase/química , Glucosídeos/toxicidade , Hemólise/efeitos dos fármacos , Humanos , Pirimidinonas/toxicidade , Uridina/análise , Uridina/toxicidade , Vicia faba/toxicidade
11.
J Nat Prod ; 80(5): 1310-1317, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28448137

RESUMO

Phenolic compounds can provide antioxidant health benefits for humans, and foods such as lentils can be valuable dietary sources of different subclasses of these secondary metabolites. This study used LC-MS analyses to compare the phenolic profiles of lentil genotypes with four seed coat background colors (green, gray, tan, and brown) and two cotyledon colors (red and yellow) grown at two locations. The mean area ratio per mg sample (MARS) values of various phenolic compounds in lentil seeds varied with the different seed coat colors conferred by specific genotypes. Seed coats of lentil genotypes with the homozygous recessive tgc allele (green and gray seed coats) had higher MARS values of flavan-3-ols, proanthocyanidins, and some flavonols. This suggests lentils featuring green and gray seed coats might be more promising as health-promoting foods.


Assuntos
Antioxidantes/análise , Flavonóis/análise , Lens (Planta)/química , Fenóis/análise , Fenóis/química , Proantocianidinas/análise , Sementes/química , Sementes/genética , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Flavonóis/química , Genótipo , Humanos , Lens (Planta)/genética , Espectrometria de Massas , Estrutura Molecular , Proantocianidinas/química , Sementes/metabolismo
12.
Can J Diet Pract Res ; 76(1): 3-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26067240

RESUMO

PURPOSE: Plant-based diets are advocated for prevention of chronic diseases. Lentils are an inexpensive plant-based meat alternative. This study determined perceived benefits and barriers to lentil consumption and how they relate to the demographics and nutritional knowledge of caregivers and consumption habits in families with children 3-11 years of age. METHODS: A self-administered questionnaire measuring nutritional knowledge and perceived benefits and barriers to the consumption of lentils was completed by 401 caregivers in a school setting in Saskatoon, Saskatchewan. RESULTS: The majority of respondents were 26-45 years of age (83%) and female (76%). Respondents associated lentils with health benefits (91%). The most frequently reported barrier associated with consumption pertained to family acceptance: "if my child liked lentils I would make them more" (76% agreement). More than half (58%) of respondents stated they "never or rarely" consumed lentils (low-consumers). Of low-consumers, top barriers included lack of knowledge on how to cook lentils and a belief that family members would not accept lentils. CONCLUSIONS: Future promotion strategies should address the top barriers to lentil consumption. An understanding of the perceived benefits and barriers surrounding lentil consumption will help formulate approaches to increase consumption of lentils as well as pulses.


Assuntos
Dieta , Conhecimentos, Atitudes e Prática em Saúde , Lens (Planta) , Valor Nutritivo , Adulto , Criança , Pré-Escolar , Comportamento do Consumidor , Culinária , Feminino , Promoção da Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Percepção , Saskatchewan , Inquéritos e Questionários
13.
Eukaryot Cell ; 12(1): 2-11, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22962277

RESUMO

The hemibiotrophic fungus Colletotrichum truncatum causes anthracnose disease on lentils and a few other grain legumes. It shows initial symptomless intracellular growth, where colonized host cells remain viable (biotrophy), and then switches to necrotrophic growth, killing the colonized host plant tissues. Here, we report a novel effector gene, CtNUDIX, from C. truncatum that is exclusively expressed during the late biotrophic phase (before the switch to necrotrophy) and elicits a hypersensitive response (HR)-like cell death in tobacco leaves transiently expressing the effector. CtNUDIX homologs, which contain a signal peptide and a Nudix hydrolase domain, may be unique to hemibiotrophic fungal and fungus-like plant pathogens. CtNUDIX lacking a signal peptide or a Nudix motif failed to induce cell death in tobacco. Expression of CtNUDIX:eGFP in tobacco suggested that the fusion protein might act on the host cell plasma membrane. Overexpression of CtNUDIX in C. truncatum and the rice blast pathogen, Magnaporthe oryzae, resulted in incompatibility with the hosts lentil and barley, respectively, by causing an HR-like response in infected host cells associated with the biotrophic invasive hyphae. These results suggest that C. truncatum and possibly M. oryzae elicit cell death to signal the transition from biotrophy to necrotrophy.


Assuntos
Colletotrichum/fisiologia , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Pirofosfatases/genética , Sequência de Aminoácidos , Morte Celular , Colletotrichum/enzimologia , Evolução Molecular , Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Hordeum/citologia , Hordeum/microbiologia , Interações Hospedeiro-Patógeno , Lens (Planta)/citologia , Lens (Planta)/microbiologia , Magnaporthe/enzimologia , Magnaporthe/fisiologia , Dados de Sequência Molecular , Nicotiana/citologia , Nicotiana/microbiologia , Nudix Hidrolases
14.
Plant Genome ; 17(2): e20455, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747009

RESUMO

Plant breeders are generally reluctant to cross elite crop cultivars with their wild relatives to introgress novel desirable traits due to associated negative traits such as pod shattering. This results in a genetic bottleneck that could be reduced through better understanding of the genomic locations of the gene(s) controlling this trait. We integrated information on parental genomes, pod shattering data from multiple environments, and high-density genetic linkage maps to identify pod shattering quantitative trait loci (QTLs) in three lentil interspecific recombinant inbred line populations. The broad-sense heritability on a multi-environment basis varied from 0.46 (in LR-70, Lens culinaris × Lens odemensis) to 0.77 (in LR-68, Lens orientalis × L. culinaris). Genetic linkage maps of the interspecific populations revealed reciprocal translocations of chromosomal segments that differed among the populations, and which were associated with reduced recombination. LR-68 had a 2-5 translocation, LR-70 had 1-5, 2-6, and 2-7 translocations, and LR-86 had a 2-7 translocation in one parent relative to the other. Segregation distortion was also observed for clusters of single nucleotide polymorphisms on multiple chromosomes per population, further affecting introgression. Two major QTL, on chromosomes 4 and 7, were repeatedly detected in the three populations and contain several candidate genes. These findings will be of significant value for lentil breeders to strategically access novel superior alleles while minimizing the genetic impact of pod shattering from wild parents.


Assuntos
Mapeamento Cromossômico , Genoma de Planta , Lens (Planta) , Melhoramento Vegetal , Locos de Características Quantitativas , Lens (Planta)/genética , Ligação Genética , Sementes/genética
15.
BMC Genomics ; 14: 192, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23506258

RESUMO

BACKGROUND: The genus Lens comprises a range of closely related species within the galegoid clade of the Papilionoideae family. The clade includes other important crops (e.g. chickpea and pea) as well as a sequenced model legume (Medicago truncatula). Lentil is a global food crop increasing in importance in the Indian sub-continent and elsewhere due to its nutritional value and quick cooking time. Despite this importance there has been a dearth of genetic and genomic resources for the crop and this has limited the application of marker-assisted selection strategies in breeding. RESULTS: We describe here the development of a deep and diverse transcriptome resource for lentil using next generation sequencing technology. The generation of data in multiple cultivated (L. culinaris) and wild (L. ervoides) genotypes together with the utilization of a bioinformatics workflow enabled the identification of a large collection of SNPs and the subsequent development of a genotyping platform that was used to establish the first comprehensive genetic map of the L. culinaris genome. Extensive collinearity with M. truncatula was evident on the basis of sequence homology between mapped markers and the model genome and large translocations and inversions relative to M. truncatula were identified. An estimate for the time divergence of L. culinaris from L. ervoides and of both from M. truncatula was also calculated. CONCLUSIONS: The availability of the genomic and derived molecular marker resources presented here will help change lentil breeding strategies and lead to increased genetic gain in the future.


Assuntos
Lens (Planta)/genética , Ligação Genética , Genômica , Genótipo , Medicago truncatula/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
16.
Toxicol Appl Pharmacol ; 272(1): 256-62, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23800687

RESUMO

Arsenic (As) toxicity causes serious health problems in humans, especially in the Indo-Gangetic plains and mountainous areas of China. Selenium (Se), an essential micronutrient is a potential mitigator of As toxicity due to its antioxidant and antagonistic properties. Selenium is seriously deficient in soils world-wide but is present at high, yet non-toxic levels in the great plains of North America. We evaluate the potential of dietary Se in counteracting chronic As toxicity in rats through serum biochemistry, blood glutathione levels, immunotoxicity (antibody response), liver peroxidative stress, thyroid response and As levels in tissues and excreta. To achieve this, we compare diets based on high-Se Saskatchewan (SK) lentils versus low-Se lentils from United States. Rats drank control (0ppm As) or As (40ppm As) water while consuming SK lentils (0.3ppm Se) or northwestern USA lentils (<0.01ppm Se) diets for 14weeks. Rats on high Se diets had higher glutathione levels regardless of As exposure, recovered antibody responses in As-exposed group, higher fecal and urinary As excretion and lower renal As residues. Selenium deficiency caused greater hepatic peroxidative damage in the As exposed animals. Thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were not different. After 14weeks of As exposure, health indicators in rats improved in response to the high Se lentil diets. Our results indicate that high Se lentils have a potential to mitigate As toxicity in laboratory mammals, which we hope will translate into benefits for As exposed humans.


Assuntos
Intoxicação por Arsênico/dietoterapia , Intoxicação por Arsênico/tratamento farmacológico , Lens (Planta)/química , Compostos de Selênio/uso terapêutico , Animais , Formação de Anticorpos/efeitos dos fármacos , Antioxidantes/metabolismo , Intoxicação por Arsênico/urina , Arsenicais/química , Arsenicais/metabolismo , Peso Corporal/efeitos dos fármacos , Doença Crônica , Dieta , Ensaio de Imunoadsorção Enzimática , Fezes/química , Glutationa/sangue , Imunoglobulina G/biossíntese , Rim/química , Rim/metabolismo , Fígado/química , Fígado/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Ratos , Ratos Wistar , Selênio/análise , Compostos de Selênio/química , Hormônios Tireóideos/metabolismo
17.
BMC Genet ; 14: 31, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23631759

RESUMO

BACKGROUND: Anthracnose of lentil, caused by the hemibiotrophic fungal pathogen Colletotrichum truncatum is a serious threat to lentil production in western Canada. Colletotrichum truncatum employs a bi-phasic infection strategy characterized by initial symptomless biotrophic and subsequent destructive necrotrophic colonization of its host. The transition from biotrophy to necrotrophy (known as the biotrophy-necrotrophy switch [BNS]) is critical in anthracnose development. Understanding plant responses during the BNS is the key to designing a strategy for incorporating resistance against hemibiotrophic pathogens either via introgression of resistance genes or quantitative trait loci contributing to host defense into elite cultivars, or via incorporation of resistance by biotechnological means. RESULTS: The in planta BNS of C. truncatum was determined by histochemical analysis of infected lentil leaf tissues in time-course experiments. A total of 2852 lentil expressed sequence tags (ESTs) derived from C. truncatum-infected leaf tissues were analyzed to catalogue defense related genes. These ESTs could be assembled into 1682 unigenes. Of these, 101 unigenes encoded membrane and transport associated proteins, 159 encoded proteins implicated in signal transduction and 387 were predicted to be stress and defense related proteins (GenBank accessions: JG293480 to JG293479). The most abundant class of defense related proteins contained pathogenesis related proteins (encoded by 125 ESTs) followed by heat shock proteins, glutathione S-transferase, protein kinases, protein phosphatase, zinc finger proteins, peroxidase, GTP binding proteins, resistance proteins and syringolide-induced proteins. Quantitative RT-PCR was conducted to compare the expression of two resistance genes of the NBS-LRR class in susceptible and partially resistant genotypes. One (contig186) was induced 6 days post-inoculation (dpi) in a susceptible host genotype (Eston) whereas the mRNA level of another ( LT21-1990) peaked 4 dpi in a partially resistant host genotype (Robin), suggesting roles in conditioning the susceptibility and conferring tolerance to the pathogen, respectively. CONCLUSIONS: Data obtained in this study suggest that lentil cells recognize C. truncatum at the BNS and in response, mount an inducible defense as evident by a high number of transcripts (23% of the total pathogen-responsive lentil transcriptome) encoding defense related proteins. Temporal expression polymorphism of defense related genes could be used to distinguish the response of a lentil genotype as susceptible or resistant.


Assuntos
Colletotrichum/patogenicidade , Genes de Plantas , Interações Hospedeiro-Patógeno , Lens (Planta)/genética , Lens (Planta)/parasitologia , Lens (Planta)/fisiologia , Estresse Fisiológico , Transcriptoma
18.
Plant Cell Rep ; 32(12): 1939-52, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24062013

RESUMO

KEY MESSAGE: Developmental context and species-specific hormone requirements are of key importance in the advancement of in vitro protocols and manipulation of seed development. Improvement of in vitro tissue and cell culture protocols in grain legumes such as embryo rescue, interspecific hybridization, and androgenesis requires an understanding of the types, activity, and balance of hormones within developing seeds. Towards this goal, the concentration of auxin, cytokinin, gibberellin, and abscisic acid (ABA) and their precursors and derivatives were measured in the developing seeds of field pea (Pisum sativum L.), chickpea (Cicer arietinum L.), lentil (Lens culinaris Medik.), and faba bean (Vicia faba L.) from 4 days after anthesis until 8 days after reaching maximum fresh weight. The importance of developmental context (developmental time and space) is demonstrated in both the differences and similarities between species for hormone profiles, especially with regard to cytokinin and ABA biosynthesis during the embryo formation. Auxin and its conjugates are significant during the pattern formation stage of all legumes; however, IAA-Asparagine appears important in the Vicieae species and its concentrations are greater than IAA from the globular stage of embryo development on in multi-seed fruits. Finally, the significance of non-polar gibberellins during lentil seed development is highlighted.


Assuntos
Fabaceae/crescimento & desenvolvimento , Fabaceae/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Ácido Abscísico/metabolismo , Biomassa , Cicer/crescimento & desenvolvimento , Cicer/metabolismo , Citocininas/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Lens (Planta)/crescimento & desenvolvimento , Lens (Planta)/metabolismo , Pisum sativum/metabolismo , Filogenia , Vicia faba/crescimento & desenvolvimento , Vicia faba/metabolismo
19.
J Agric Food Chem ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36753710

RESUMO

Lentil seed coats are rich in antioxidant polyphenols that are important for plant defense and have potential as valorized byproducts. Although biochemical differences among lentil seed coat colors have been previously studied, differences among seed coat patterns remain largely unexplored. This study used mass spectrometry-based untargeted metabolomics to investigate polyphenol differences among lentil seed coat patterns to search for biochemical pathways potentially responsible for seed coat pattern differences. Comparing patterned with non-patterned green lentil seed coats, 28 significantly upregulated metabolites were found in patterned seed coats; 19 of them were identified as flavones. Flavones were virtually absent in non-patterned seed coats, thereby strongly suggesting a blockage in their flavone biosynthetic pathway. Although the black pattern is not readily discernible on black seed coats, many of the same flavones found in green marbled seed coats were also found in black seed coats, indicating that black seed coats likely have a marbled pattern.

20.
Food Chem ; 407: 135145, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521391

RESUMO

The seed coat is a major byproduct of lentil processing with potential as a sustainable source of antioxidant polyphenols. Profiles of water-soluble phenolic compounds and antioxidant activities of seven genotypes of lentil which includes both normal-tannin and low-tannin seed coats were investigated. Antioxidant activities were assessed using four antioxidant assays, and phenolic compounds were quantified using liquid chromatography mass spectrometry (LC-MS). Total phenolic content (TPC) varied significantly among genotypes and ranged between 1519 ± 140 and 6502 ± 154 µg/g. Thirty phenolic compounds were identified with kaempferol tetraglycoside, catechin-3-glucoside and procyanidins being the dominant compounds in normal-tannin seed coats. Kaempferol tetraglycoside predominated (80-90%) in low-tannin seed coats. Antioxidant activities strongly correlated with TPC (r > 0.93) with a 6-9 times higher activity in normal-tannin than that of low-tannin lentils. Without flavan-3-ols and procyanidins, low-tannin seed coat may not exert strong antioxidant potential, whereas normal-tannin seed coat contains water-extractable natural phenolic compounds with promising antioxidant potential.


Assuntos
Lens (Planta) , Proantocianidinas , Antioxidantes/química , Proantocianidinas/análise , Lens (Planta)/genética , Lens (Planta)/química , Quempferóis/análise , Fenóis/análise , Taninos/análise , Sementes/genética , Sementes/química , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA