Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Food Sci Technol ; 60(9): 2401-2407, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37424583

RESUMO

This study aimed to evaluate the feasibility of using sugar-sweetened beverages (SSB) for citric acid (CA) production and its impact on chemical oxygen demand (COD) of SSB. Five types of SSB were used as a carbon source for CA production by A. niger, and the COD of each SSB was measured before and after the bioprocess. Results showed that all tested SSB were suitable for CA production, with maximum yields ranging from 13.01 to 56.62 g L- 1. The COD was reduced from 53 to 75.64%, indicating that the bioprocess effectively treated SSB wastes. The use of SSB as a substrate for CA production provides an alternative to traditional feedstocks, such as sugarcane and beet molasses. The low-cost and high availability of SSB makes it an attractive option for CA production. Moreover, the study demonstrated the potential of the bioprocess to simultaneously treat and reuse SSB wastes, reducing the environmental impact of the beverage industry. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05761-9.

2.
Food Microbiol ; 93: 103608, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32912581

RESUMO

Cocoa beans used for chocolate production are fermented seeds of Theobroma cacao obtained by a natural fermentation process. The flavors and chemical compounds produced during the fermentation process make this step one of the most important in fine chocolate production. Herein, an integrative analysis of the variation of microbial community structure, using a shotgun metagenomics approach and associated physicochemical features, was performed during fermentation of fine cocoa beans. Samples of Forastero variety (FOR) and a mixture of two hybrids (PS1319 and CCN51) (MIX) from Bahia, Brazil, were analyzed at 7 different times. In the beginning (0 h), the structures of microbial communities were very different between FOR and MIX, reflecting the original plant-associated microbiomes. The highest change in microbial community structures occurred at the first 24 h of fermentation, with a marked increase in temperature and acetic acid concentration, and pH decrease. At 24-48 h both microbial community structures were quite homogenous regarding temperature, acetic acid, succinic acid, pH, soluble proteins and total phenols. During 72-96 h, the community structure resembles an acidic and warmer environment, prevailing few acetic acid bacteria. Taxonomic richness and abundance at 72-144 h exhibited significant correlation with temperature, reducing sugars, succinic, and acetic acids. Finally, we recommend that dominant microbial species of spontaneous fine cocoa fermentations should be considered as inoculum in accordance with the farm/region and GMP to maintain a differential organoleptic feature for production of fine chocolate. In our study, a starter inoculum composed of Acetobacter pausterianus and Hanseniaspora opuntiae strains is indicated.


Assuntos
Cacau/microbiologia , Fermentação , Alimentos Fermentados , Microbiologia de Alimentos , Metagenômica/métodos , Ácido Acético/metabolismo , Acetobacter/metabolismo , Bactérias/metabolismo , Brasil , Chocolate , Aromatizantes , Hanseniaspora/genética , Hanseniaspora/metabolismo , Microbiota/genética , Sementes/microbiologia
3.
Planta ; 251(3): 70, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32086615

RESUMO

MAIN CONCLUSION: Lipopeptides could help to overcome a large concern in agriculture: resistance against chemical pesticides. These molecules have activity against various phytopathogens and a potential to be transformed by genetic engineering. The exponential rise of pest resistances to different chemical pesticides and the global appeal of consumers for a sustainable agriculture and healthy nutrition have led to the search of new solutions for pest control. Furthermore, new laws require a different stance of producers. Based on that, bacteria of the genus Bacillus present a great agricultural potential, producing lipopeptides (LPs) that have high activity against insects, mites, nematodes, and/or phytopathogens that are harmful to plant cultures. Biopesticide activity can be found mainly in three families of Bacillus lipopeptides: surfactin, iturin, and fengycin. These molecules have an amphiphilic nature, interfering with biological membrane structures. Their antimicrobial properties include activity against bacteria, fungi, oomycetes, and viruses. Recent studies also highlight the ability of these compounds to stimulate defense mechanisms of plants and biofilm formation, which is a key factor for the successful colonization of biocontrol organisms. The use of molecular biology has also recently been researched for continuous advances and discoveries of new LPs, avoiding possible future problems of resistance against these molecules. As a consequence of the properties and possibilities of LPs, numerous studies and developments as well as the attention of large companies in the field is expected in the near future.


Assuntos
Agricultura , Bacillus/metabolismo , Lipopeptídeos/farmacologia , Controle Biológico de Vetores/métodos , Animais , Anti-Infecciosos/farmacologia , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Resistência a Medicamentos , Fungos/efeitos dos fármacos , Insetos/efeitos dos fármacos , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Ácaros/efeitos dos fármacos , Nematoides/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Praguicidas/farmacologia , Doenças das Plantas/prevenção & controle , Plantas/microbiologia , Vírus/efeitos dos fármacos
4.
Biotechnol Appl Biochem ; 67(5): 723-731, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31545870

RESUMO

Second-generation bioethanol production process was developed using pretreated empty fruit bunches (EFB). Consecutive acid/alkali EFB pretreatment was performed, first with HCl and then with NaOH with final washing steps for phenolic compounds elimination. Scanning electron microscopy images showed that EFB chemical treatments indeed attacked the cellulose fibers and removed the silica from surface pores. The optimization of enzymatic hydrolysis of EFB's cellulosic fraction was performed with 0.5%-4% v/v of Cellic® CTec2/Novozymes, different EFB concentrations (5%-15%, w/v), and hydrolysis time (6-72 H). Optimization essays were carried out in Erlenmeyer flasks and also in a 1 L stirred tank reactor. After enzymatic hydrolysis, a hydrolysate with 66 g/L of glucose was achieved with 2.2% (v/v) Cellic® CTec2, 15% (m/v) acid/alkaline pretreated EFB after 39 H of hydrolysis. A gain of 11.2% was then obtained in the 1 L stirred tank promoted by the agitation (72.2 g/L glucose). The hydrolysate was employed in bioethanol production by a new isolate Candida pelliculosa CCT 7734 in a separate hydrolysis and fermentation process reaching 16.6 and 23.0 g/L of bioethanol through batch and fed-batch operation, respectively. An integrated biorefinery process was developed for EFB processing chain.


Assuntos
Arecaceae/metabolismo , Biocombustíveis , Etanol/metabolismo , Saccharomycetales/metabolismo , Biocatálise , Biocombustíveis/análise , Biocombustíveis/microbiologia , Celulose/metabolismo , Etanol/análise , Fermentação , Frutas/metabolismo , Hidrólise , Microbiologia Industrial
5.
Planta ; 248(5): 1049-1062, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30069731

RESUMO

MAIN CONCLUSION: Gibberellic acid is a plant growth hormone that promotes cell expansion and division. Studies have aimed at optimizing and reducing production costs, which could make its application economically viable for different cultivars. Gibberellins consist of a large family of plant growth hormones discovered in the 1930s, which are synthesized via the terpenes route from the geranylgeranyl diphosphate and feature a basic structure formed by an ent-gibberellane tetracyclic skeleton. Among them, only four have biological activity, including gibberellic acid (GA3), which acts as a natural plant growth regulator, especially for stem elongation, seed germination, and increased fruit size. It can be obtained from plants, fungi, and bacteria. There are also some reports about microalgae GA3 producers. Fungi, especially Gibberella fujikuroi, are preferred for GA3 production via submerged fermentation or solid-state fermentation. Many factors may affect its production, some of which are related to the control and scale-up of fermentation parameters. Different GA3 products are available on the market. They can be found in liquid or solid formulations containing only GA3 or a mixture of other biological active gibberellins, which can be applied on a wide variety of cultivars, including crops and fruits. However, the product's cost still limits its large and continuous application. New low-cost and efficient GA3 production alternatives are surely welcome. This review deals with the latest scientific and technological advances on production, recovery, formulation, and applications of this important plant growth hormone.


Assuntos
Giberelinas/síntese química , Reguladores de Crescimento de Plantas/síntese química , Biotecnologia/métodos , Fermentação , Giberelinas/química , Giberelinas/isolamento & purificação , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/isolamento & purificação
6.
Food Microbiol ; 66: 86-95, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28576377

RESUMO

Sugary kefir beverage is produce by fermenting raw sugar solution with kefir grains, the latter consisting of polysaccharide and microorganisms. This beverage, with great consumption in countries such as USA, Japan, France, and Brazil, represents a promising market to functional cultured drinks. This paper reviews the microbial diversity and interaction, kinetics, safety, and bioactivities of sugary kefir fermentation. The literature reviewed here demonstrates that sugary kefir possesses a similar microbial association relative to traditional milk kefir fermentation, especially among lactic acid bacteria and yeast species, such as Lactobacillus, Leuconostoc, Kluyveromyces, Pichia, and Saccharomyces. However, a selective pressure at species level is generally observed, as, for example, the stimulation of Saccharomyces species metabolism, leading to a high content of alcohol in the final product. This also seems to stimulate the growth of acetic acid bacteria that benefit of increased ethanol production to acetic acid metabolism. Existing reports have suggested important bioactivities associated with sugary kefir beverage consumption, such as antimicrobial, antiedematogenic, anti-inflammatory, antioxidant, cicatrizing, and healing activities. Other alternative non-dairy substrates, such as fruits, vegetables, and molasses, have also been tested for adaptation of kefir grains and production of functional beverages with distinct sensory characteristics. This diversification is of crucial importance for the production of new probiotic products to provide people with special needs (lactose intolerance) and vegan consumers.


Assuntos
Alimento Funcional/análise , Kefir/análise , Kefir/microbiologia , Animais , Fermentação , Manipulação de Alimentos , Humanos , Lactobacillales/metabolismo , Saccharomycetales/metabolismo
7.
Crit Rev Biotechnol ; 35(4): 533-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24963702

RESUMO

The genus Bacillus includes a great diversity of industrially important strains, including Bacillus atrophaeus (formerly Bacillus subtilis var. niger). This spore-forming bacterium has been established as industrial bacteria in the production of biological indicators for sterilization, in studies of biodefense and astrobiology methods as well as disinfection agents, in treatment evaluation and as potential adjuvants or vehicles for vaccines, among other applications. This review covers an overview of the fundamental aspects of the B. atrophaeus that have been studied to date. Although the emphasis is placed on recent findings, basic information's such as multicellularity and growth characteristics, spore structure and lifecycle are described. The wide biotechnological application of B. atrophaeus spores, including vegetative cells, is briefly demonstrated, highlighting their use as a biological indicator of sterilization or disinfection.


Assuntos
Bacillus subtilis/genética , Biotecnologia , Esporos Bacterianos/genética , Bacillus subtilis/química , Bacillus subtilis/crescimento & desenvolvimento , Desinfetantes/farmacologia , Exobiologia , Esporos Bacterianos/crescimento & desenvolvimento
8.
Bioresour Technol ; 393: 130078, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37993072

RESUMO

The need for a sustainable and circular bioeconomy model is imperative due to petroleum non-renewability, scarcity and environmental impacts. Biorefineries systems explore biomass to its maximum, being an important pillar for the development of circular bioeconomy. Polyhydroxyalkanoates (PHAs) can take advantage of biorefineries, as they can be produced using renewable feedstocks, and are potential substitutes for petrochemical plastics. The present work aims to evaluate the current status of the industrial development of PHAs production in biorefineries and PHAs contributions to the bioeconomy, along with future development points. Advancements are noticed when PHA production is coupled in wastewater treatment systems, when residues are used as substrate, and also when analytical methodologies are applied to evaluate the production process, such as the Life Cycle and Techno-Economic Analysis. For the commercial success of PHAs, it is established the need for dedicated investment and policies, in addition to proper collaboration of different society actors.


Assuntos
Petróleo , Poli-Hidroxialcanoatos , Plásticos , Biomassa
9.
Chemosphere ; : 142867, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019183

RESUMO

Pesticides pose significant risks to both human health, such as cancer, neurological disorders, and endocrine disruption, and ecosystems, through the destruction of beneficial insects, contamination of soil and water, and impact on non-target species. In the face of escalating pesticide pollution, there is an urgent need for multifaceted approaches to address the issue. Bioremediation emerges as a potent tool in the environmental pollution mitigation arsenal. Ideally aiming for the complete decomposition of pesticides into harmless molecules, bioremediation encompasses diverse approaches - from bioabsorption, bioadsorption, and biotransformation using enzymes and nanoenzymes to comprehensive degradation facilitated by microorganisms such as bacteria, fungi, macro- and microalgae, or phytoremediation. Exploring nature's biodiversity offers a promising avenue to find solutions to this pressing human-induced problem. The acceleration of biodegradation necessitates identifying and developing efficient organisms, achieved through bioprospection and targeted modifications. Specific strategies to enhance process efficiency and throughput include optimizing biomass production, strategic inoculation in diverse environments, and employing bioreactor systems for processing heavily contaminated waters or soils. This comprehensive review presents various bioremediation approaches, emphasizing the importance of microorganisms' exploration and new technologies development, including current innovations and patents to effectively combat pesticide pollution. Furthermore, challenges regarding the effective implementation of these technologies are also addressed.

10.
Appl Microbiol Biotechnol ; 97(3): 1031-42, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22911095

RESUMO

The development of new value-added applications for glycerol is of worldwide interest because of the environmental and economic problems that may be caused by an excess of glycerol generated from biodiesel production. A novel use of glycerol as a major substrate for production of a low-cost sterilization biological indicator system (BIS; spores on a carrier plus a recovery medium) was investigated. A sequential experimental design strategy was applied for product development and optimization. The proposed recovery medium enables germination and outgrowth of heat-damaged spores, promoting a D (160 °C) value of 6.6 ± 0.1 min. Bacillus atrophaeus spores production by solid-state fermentation reached a 2.3 ± 1.2 × 10(8) CFU/g dry matter. Sporulation kinetics results allowed this process to be restricted in 48 h. Germination kinetics demonstrated the visual identification of nonsterile BIS within 24 h. Performance evaluation of the proposed BIS against dry-heat and ethylene oxide sterilization showed compliance with the regulatory requirements. Cost breakdowns were from 41.8 (quality control) up to 72.8 % (feedstock). This is the first report on sterilization BIS production that uses glycerol as a sole carbon source, with significant cost reduction and the profitable use of a biodiesel byproduct.


Assuntos
Bacillus/efeitos dos fármacos , Bacillus/efeitos da radiação , Bioensaio/métodos , Glicerol/metabolismo , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/efeitos da radiação , Esterilização/métodos , Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Bioensaio/economia , Custos e Análise de Custo , Meios de Cultura/química , Controle de Qualidade , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/metabolismo , Esterilização/normas , Fatores de Tempo
11.
World J Microbiol Biotechnol ; 29(12): 2317-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23760557

RESUMO

Citric acid (CA) is one of the most important products of fermentation in the world. A great variety of agro-industrial residues can be used in solid state fermentation. Aspergillus niger parental strain (CCT 7716) and two strains obtained by mutagenesis (CCT 7717 and CCT 7718) were evaluated in Erlenmeyer flasks and glass columns using citric pulp (CP) as substrate/support, sugarcane molasses and methanol. Best results using glass columns (forced aeration) were found in the fourth day of fermentation: 278.4, 294.9 and 261.1 g CA/kg of dry CP with CCT 7716, CCT 7718 and CCT 7717, respectively. In Erlenmeyer flasks (aeration by diffusion) CA reached 410.7, 446.8 and 492.7 g CA/kg of dry CP with CCT 7716, CCT 7718 and CCT 7717, respectively. The aeration by diffusion improved CA production by the three strains. A data acquisition system specially developed for biotechnological processes analysis was used to perform the respirometric parameters measurement.


Assuntos
Aspergillus niger/genética , Aspergillus niger/metabolismo , Ácido Cítrico/metabolismo , Citrus/química , Aspergillus niger/efeitos da radiação , Biomassa , Reatores Biológicos , Biotecnologia , Cromatografia Gasosa , Ergosterol , Fermentação , Metanol/metabolismo , Melaço , Mutagênese , Raios Ultravioleta
12.
Bioresour Technol ; 372: 128666, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36693509

RESUMO

Lignocellulosic biomass is a renewable material of great abundance. However, its recalcitrant characteristic requires the application of pretreatments. Sugarcane bagasse (SB), soybean hulls (SH), cocoa pod husks (CPH) and oil palm empty fruit bunches (OPEFB) were subjected to imidazole pretreatment in order to evaluate chemical composition variations and influence over enzymatic hydrolysis efficiency. Non-treated SH, SB and OPEFB have higher content of holocellulose, while CPH is rich in lignin polymers (31.2%). After imidazole-pretreatment, all biomasses presented structural disorganization of lignocellulosic fibres and enrichment in the percentage of cellulose. Levels of up to 72% delignification were obtained, which allowed an enzymatic conversion greater than 95% for SB, SH and OPEFB, while only 83% was reached for CPH. Imidazole is then emerging as a potential catalyst for the pretreatment of agro-industrial by-products, allowing the valorisation of these residues and their reinsertion into the production chain under a biorefinery concept.


Assuntos
Celulose , Saccharum , Celulose/química , Solventes , Biomassa , Lignina/química , Imidazóis , Hidrólise
13.
Bioresour Technol ; 372: 128650, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682478

RESUMO

Soybean hulls are lignocellulosic residuesgeneratedinthe industrial processing of soybean, representing about 5 % of the mass of the whole bean. This by-product isan importantsource of polymers suchas cellulose(34 %) and hemicellulose (11 %),which could bevalorizedvia biotechnology to improvethe economic returnof the oilseed chain. In the present work,soybean hulls were evaluated as a carbon sourcefor biolipid productionbyLipomycesstarkeyi LPB 53. Initially the hulls were treated physicochemically and enzymatically to obtain fermentable sugars. Subsequently, biomass growth was evaluated using different nitrogen sources andthe lipid production was optimized, reaching a maximum cell biomass concentration of 26.5 g/L with 42.5 % of lipids. Around 65 % of the xylose content was consumed.The obtained oil wasmajorlycomposed of oleic, palmitic, palmitoleic, linoleic and stearic fatty acids in a proportion of 54 %, 32 %, 4 %, 3 % and 2 %, respectively.


Assuntos
Lipídeos , Lipomyces , Glycine max , Fermentação
14.
Foods ; 12(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37509773

RESUMO

In recent years, concerns about a good-quality diet have increased. Food supplements such as prebiotics have great nutritional and health benefits. Within the diverse range of prebiotics, xylooligosaccharides (XOs) show high potential, presenting exceptional properties for the prevention of systemic disorders. XOs can be found in different natural sources; however, their production is limited. Lignocellulosic biomasses present a high potential as a source of raw material for the production of XOs, making the agro-industrial by-products the perfect candidates for production on an industrial scale. However, these biomasses require the application of physicochemical pretreatments to obtain XOs. Different pretreatment methodologies are discussed in terms of increasing the production of XOs and limiting the coproduction of toxic compounds. The advance in new technologies for XOs production could decrease their real cost (USD 25-50/kg) on an industrial scale and would increase the volume of market transactions in the prebiotic sector (USD 4.5 billion). In this sense, new patents and innovations are being strategically developed to expand the use of XOs as daily prebiotics.

15.
Bioresour Technol ; 370: 128537, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36581233

RESUMO

The high costs of bioplastics' production may hinder their commercialization. Development of new processes with high yields and in biorefineries can enhance diffusion of these materials. This work evaluated the production of polyhydroxybutyrate (PHB) from the combination of milled corn starchy fraction hydrolysate and crude glycerol as substrates by the strain Cupriavidus necator LPB 1421. After optimization steps, maximum accumulation of 62 % of PHB was obtained, which represents 11.64 g.L-1 and productivity of 0.162 g.Lh-1. In a stirred tank bioreactor system with 8 L of operational volume, 70 % of PHB accumulation was reported, representing 14.17 g.L-1 of the biopolymer with 0.197 g.Lh-1 productivity. PHB recovery was conducted using a chemical digestion method, reaching >99 % purity. Therefore, the potential application of milled corn as substrate for PHB production was confirmed. The developed bioplastic process could be coupled to a bioethanol producing unit creating the opportunity of a sustainable and economic biorefinery.


Assuntos
Cupriavidus necator , Hidroxibutiratos , Zea mays , Poliésteres , Biopolímeros
16.
iScience ; 26(6): 106785, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37250780

RESUMO

Due to their widespread occurrence and the inadequate removal efficiencies by conventional wastewater treatment plants, emerging contaminants (ECs) have recently become an issue of great concern. Current ongoing studies have focused on different physical, chemical, and biological methods as strategies to avoid exposing ecosystems to significant long-term risks. Among the different proposed technologies, the enzyme-based processes rise as green biocatalysts with higher efficiency yields and lower generation of toxic by-products. Oxidoreductases and hydrolases are among the most prominent enzymes applied for bioremediation processes. The present work overviews the state of the art of recent advances in enzymatic processes during wastewater treatment of EC, focusing on recent innovations in terms of applied immobilization techniques, genetic engineering tools, and the advent of nanozymes. Future trends in the enzymes immobilization techniques for EC removal were highlighted. Research gaps and recommendations on methods and utility of enzymatic treatment incorporation in conventional wastewater treatment plants were also discussed.

17.
Bioresour Technol ; 386: 129545, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37488015

RESUMO

2,5-Furandicarboxylic acid (FDCA) is one of the platform chemicals and monomers used in plastic industries, currently synthesized by carcinogenic and toxic chemical processes with high pressure and temperature. The aim of this study was to develop a bioprocess for the production of FDCA. 5-(Hydroxymethyl)furfural (HMF) was synthesized (22.67 ± 1.36 g/l/h) from pineapple peel using chromium(III) chloride (CrCl3) at 100 °C. After optimization, approximately 3 mg/l/h FDCA was produced by Aspergillus flavus APLS-1 from HMF in a 2.5 L fermenter in a batch strategy. Parallel and immobilized packed bad bioreactors showed less production of FDCA. A fed-batch strategy produced 3.5 ± 0.3 mg/l/h of FDCA in shake flasks. Also, approximately 0.55 mg/l/h of FDCA was produced from pineapple waste derived HMF. However, these bioprocesses may be improved to increase the yield of renewable FDCA, in the future. This is the first report on FDCA production from pineapple waste.


Assuntos
Ananas , Fermentação , Furanos , Furaldeído , Ácidos Dicarboxílicos
18.
Crit Rev Biotechnol ; 32(3): 263-73, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22044348

RESUMO

The gibberellins (GAs) are an important group of hormones which exert various effects on promoter and regulator of plant growth. Gibberellic acid (GA(3)) is a natural plant hormone, with great economical and industrial importance. It affects stem elongation, germination, elimination of dormancy, flowering, sex expression, enzyme induction and leaf and fruit senescence. Despite its diverse applications, the use of GA(3) is limited due to its high production costs. The industrial process currently used for the production of GA(3) is based on submerged fermentation (SmF) techniques. As an alternative for its production, solid state fermentation (SSF) has also been investigated for its ability to increase the yields of GA(3) with the use of agro-industrial wastes as support/substrate, which contributes to the decreased production costs. This review describes GA(3)'s physical, chemical and biological properties, its production by fermentation and new advances that are being carried out with special interest on the SSF technique.


Assuntos
Reatores Biológicos , Giberelinas/biossíntese , Microbiologia Industrial/métodos , Fermentação
19.
Arch Microbiol ; 194(12): 991-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22872104

RESUMO

Biological indicators are important tools in infection control via sterilization process monitoring. The use of a standardized spore crop with a well-defined heat resistance will guarantee the quality of a biological indicator. Ambient factors during sporulation can affect spore characteristics and properties, including heat resistance. The aim of this study is to evaluate the main sporulation factors responsible for heat resistance in Geobacillus stearothermophilus, a useful biological indicator for steam sterilization. A sequence of a three-step optimization of variables (initial pH, nutrient concentration, tryptone, peptone, beef extract, yeast extract, manganese sulfate, magnesium sulfate, calcium chloride and potassium phosphate) was carried out to screen those that have a significant influence on heat resistance of produced spores. The variable exerting greatest influence on G. stearothermophilus heat resistance during sporulation was found to be the initial pH. Lower nutrient concentration and alkaline pH around 8.5 tended to enhance decimal reduction time at 121 °C (D(121°C)). A central composite design enabled a fourfold enhancement in heat resistance, and the model obtained accurately describes positive pH and negative manganese sulfate concentration influence on spore heat resistance.


Assuntos
Geobacillus stearothermophilus/fisiologia , Temperatura Alta , Esporos Bacterianos/fisiologia , Vapor , Esterilização , Concentração de Íons de Hidrogênio , Indicadores e Reagentes
20.
Arch Microbiol ; 194(10): 815-25, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22526268

RESUMO

Bacillus spp. spores are usually obtained from strains cultivated in artificial media. However, in natural habitats, spores are predominantly formed from bacteria present in highly surface-associated communities of cells. Solid-state fermentation (SSF) is the culture method that best mimetizes the natural environment of many microorganisms that grow attached to the surface of solid particles. This study aims to confirm that sporulation through SSF of Bacillus atrophaeus occurs by biofilm formation and that this model of fermentation promotes important phenotypic changes in the spores. Sporulation on standard agar and by SSF with sand and sugarcane bagasse as support was followed by a comparative study of the formed spores. Growth characteristics, metabolic and enzymatic profiles confirmed that sporulation through SSF occurs by biofilm formation promoting important phenotypic changes. It was possible to demonstrate that spores coat had different structure and the presence of ridges only on SSF spores' surface. The sporulation conditions did not affect the dry-heat spore resistance. The type of support evaluated also influenced in the phenotypic alterations; however, the used substrates did not cause interference. This work provides novel information about B. atrophaeus response when submitted to different sporulation conditions and proposes a new concept about bacterial biofilm formation by SSF.


Assuntos
Bacillus/fisiologia , Biofilmes , Fermentação , Bacillus/enzimologia , Bacillus/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura , Esporos Bacterianos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA