RESUMO
1. Although local variation in territorial predator density is often correlated with habitat quality, the causal mechanism underlying this frequently observed association is poorly understood and could stem from facultative adjustment in either group size or territory size. 2. To test between these alternative hypotheses, we used a novel statistical framework to construct a winter population-level utilization distribution for wolves (Canis lupus) in northern Ontario, which we then linked to a suite of environmental variables to determine factors influencing wolf space use. Next, we compared habitat quality metrics emerging from this analysis as well as an independent measure of prey abundance, with pack size and territory size to investigate which hypothesis was most supported by the data. 3. We show that wolf space use patterns were concentrated near deciduous, mixed deciduous/coniferous and disturbed forest stands favoured by moose (Alces alces), the predominant prey species in the diet of wolves in northern Ontario, and in proximity to linear corridors, including shorelines and road networks remaining from commercial forestry activities. 4. We then demonstrate that landscape metrics of wolf habitat quality - projected wolf use, probability of moose occupancy and proportion of preferred land cover classes - were inversely related to territory size but unrelated to pack size. 5. These results suggest that wolves in boreal ecosystems alter territory size, but not pack size, in response to local variation in habitat quality. This could be an adaptive strategy to balance trade-offs between territorial defence costs and energetic gains due to resource acquisition. That pack size was not responsive to habitat quality suggests that variation in group size is influenced by other factors such as intraspecific competition between wolf packs.
Assuntos
Ecossistema , Comportamento Social , Territorialidade , Lobos/fisiologia , Animais , Sistemas de Informação Geográfica , Ontário , Estações do AnoRESUMO
Woodland caribou (Rangifer tarandus caribou) in Ontario are a threatened species that have experienced a substantial retraction of their historic range. Part of their decline has been attributed to increasing densities of anthropogenic linear features such as trails, roads, railways, and hydro lines. These features have been shown to increase the search efficiency and kill rate of wolves. However, it is unclear whether selection for anthropogenic linear features is additive or compensatory to selection for natural (water) linear features which may also be used for travel. We studied the selection of water and anthropogenic linear features by 52 resident wolves (Canis lupus x lycaon) over four years across three study areas in northern Ontario that varied in degrees of forestry activity and human disturbance. We used Euclidean distance-based resource selection functions (mixed-effects logistic regression) at the seasonal range scale with random coefficients for distance to water linear features, primary/secondary roads/railways, and hydro lines, and tertiary roads to estimate the strength of selection for each linear feature and for several habitat types, while accounting for availability of each feature. Next, we investigated the trade-off between selection for anthropogenic and water linear features. Wolves selected both anthropogenic and water linear features; selection for anthropogenic features was stronger than for water during the rendezvous season. Selection for anthropogenic linear features increased with increasing density of these features on the landscape, while selection for natural linear features declined, indicating compensatory selection of anthropogenic linear features. These results have implications for woodland caribou conservation. Prey encounter rates between wolves and caribou seem to be strongly influenced by increasing linear feature densities. This behavioral mechanism-a compensatory functional response to anthropogenic linear feature density resulting in decreased use of natural travel corridors-has negative consequences for the viability of woodland caribou.