Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 52(1): 15-27, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23231454

RESUMO

Some metal ion complexing properties of DPP (2,9-Di(pyrid-2-yl)-1,10-phenanthroline) are reported with a variety of Ln(III) (Lanthanide(III)) ions and alkali earth metal ions, as well as the uranyl(VI) cation. The intense π-π* transitions in the absorption spectra of aqueous solutions of 10(-5) M DPP were monitored as a function of pH and metal ion concentration to determine formation constants of the alkali-earth metal ions and Ln(III) (Ln = lanthanide) ions. It was found that log K(1)(DPP) for the Ln(III) ions has a peak at Ln(III) = Sm(III) in a plot of log K(1) versus 1/r(+) (r(+) = ionic radius for 8-coordination). For Ln(III) ions larger than Sm(III), there is a steady rise in log K(1) from La(III) to Sm(III), while for Ln(III) ions smaller than Sm(III), log K(1) decreases slightly to the smallest Ln(III) ion, Lu(III). This pattern of variation of log K(1) with varying size of Ln(III) ion was analyzed using MM (molecular mechanics) and DFT (density functional theory) calculations. Values of strain energy (∑U) were calculated for the [Ln(DPP)(H(2)O)(5)](3+) and [Ln(qpy)(H(2)O)(5)](3+) (qpy = quaterpyrdine) complexes of all the Ln(III) ions. The ideal M-N bond lengths used for the Ln(III) ions were the average of those found in the CSD (Cambridge Structural Database) for the complexes of each of the Ln(III) ions with polypyridyl ligands. Similarly, the ideal M-O bond lengths were those for complexes of the Ln(III) ions with coordinated aqua ligands in the CSD. The MM calculations suggested that in a plot of ∑U versus ideal M-N length, a minimum in ∑U occurred at Pm(III), adjacent in the series to Sm(III). The significance of this result is that (1) MM calculations suggest that a similar metal ion size preference will occur for all polypyridyl-type ligands, including those containing triazine groups, that are being developed as solvent extractants in the separation of Am(III) and Ln(III) ions in the treatment of nuclear waste, and (2) Am(III) is very close in M-N bond lengths to Pm(III), so that an important aspect of the selectivity of polypyridyl type ligands for Am(III) will depend on the above metal ion size-based selectivity. The selectivity patterns of DPP with the alkali-earth metal ions shows a similar preference for Ca(II), which has the most appropriate M-N lengths. The structures of DPP complexes of Zn(II) and Bi(III), as representative of a small and of a large metal ion respectively, are reported. [Zn(DPP)(2)](ClO(4))(2) (triclinic, P1, R = 0.0507) has a six-coordinate Zn(II), with each of the two DPP ligands having one noncoordinated pyridyl group appearing to be π-stacked on the central aromatic ring of the other DPP ligand. [Bi(DPP)(H(2)O)(2)(ClO(4))(2)](ClO(4)) (triclinic, P1, R = 0.0709) has an eight-coordinate Bi, with the coordination sphere composed of the four N donors of the DPP ligand, two coordinated water molecules, and the O donors of two unidentate perchlorates. As is usually the case with Bi(III), there is a gap in the coordination sphere that appears to be the position of a lone pair of electrons on the other side of the Bi from the DPP ligand. The Bi-L bonds become relatively longer as one moves from the side of the Bi containg the DPP to the side where the lone pair is thought to be situated. A DFT analysis of [Ln(tpy)(H(2)O)(n)](3+) and [Ln(DPP)(H(2)O)(5)](3+) complexes is reported. The structures predicted by DFT are shown to match very well with the literature crystal structures for the [Ln(tpy)(H(2)O)(n)](3+) with Ln = La and n = 6, and Ln = Lu with n = 5. This then gives one confidence that the structures for the DPP complexes generated by DFT are accurate. The structures generated by DFT for the [Ln(DPP)(H(2)O)(5)](3+) complexes are shown to agree very well with those generated by MM, giving one confidence in the accuracy of the latter. An analysis of the DFT and MM structures shows the decreasing O--O nonbonded distances as one progresses from La to Lu, with these distances being much less than the sum of the van der Waals radii for the smaller Ln(III) ions. The effect that such short O--O nonbonded distances has on thermodynamic complex stability and coordination number is then discussed.


Assuntos
Elementos da Série dos Lantanídeos/química , Compostos Organometálicos/química , Fenantrolinas/química , Urânio/química , Íons/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Teoria Quântica , Soluções , Água/química
2.
Inorg Chem ; 51(5): 3007-15, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-22356117

RESUMO

Some metal-ion-complexing properties of the ligand 2-(pyrid-2'-yl)-1,10-phenanthroline (MPP) are reported. MPP is of interest in that it is a more preorganized version of 2,2';6,2''-terpyridine (tpy). Protonation constants (pK(1) = 4.60; pK(2) = 3.35) for MPP were determined by monitoring the intense π-π* transitions of 2 × 10(-5) M solutions of the ligand as a function of the pH at an ionic strength of 0 and 25 °C. Formation constants (log K(1)) at an ionic strength of 0 and 25 °C were obtained by monitoring the π-π* transitions of MPP titrated with solutions of the metal ion, or 1:1 solutions of MPP and the metal ion were titrated with acid. Large metal ions such as Ca(II) or La(III) showed increases of log K(1) of about 1.5 log units compared to that of tpy. Small metal ions such as Zn(II) and Ni(II) showed little increase in log K(1) for MPP compared to the tpy complexes, which is attributed to the presence of five-membered chelate rings in the MPP complexes, which favor large metal ions. The structure of [Cd(MPP)(H(2)O)(NO(3))(2)] (1) is reported: monoclinic, P2(1)/c, a = 7.4940(13) Å, b = 12.165(2) Å, c = 20.557(4) Å, ß = 96.271(7)°, V = 1864.67(9) Å(3), Z = 4, and final R = 0.0786. The Cd in 1 is seven-coordinate, comprising the three donor atoms of MPP, a coordinated water, a monodentate, and a bidentate NO(3)(-). Cd(II) is a fairly large metal ion, with r(+) = 0.96 Å, slightly too small for coordination with MPP. The effect of this size matching in terms of the structure is discussed. Fluorescence spectra of 2 × 10(-7) M MPP in aqueous solution are reported. The nonprotonated MPP ligand fluoresces only weakly, which is attributed to a photoinduced-electron-transfer effect. The chelation-enhanced-fluorescence (CHEF) effect induced by some metal ions is presented, and the trend of the CHEF effect, which is Ca(II) > Zn(II) > Cd(II) ~ La(III) > Hg(II), is discussed in terms of factors that control the CHEF effect, such as the heavy-atom effect.


Assuntos
Complexos de Coordenação/química , Fenantrolinas/química , Cristalografia por Raios X , Fluorescência , Íons/química , Ligantes , Metais/química , Modelos Moleculares , Termodinâmica
3.
Anal Chem ; 83(13): 5045-9, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21619005

RESUMO

We describe a novel method for high-resolution chemical imaging on a surface embedded in tissue. The sensor surface consists of an X-ray scintillator film coated in a thin film loaded with chemical indicator dye. A narrow scanning X-ray beam is used to excite luminescence from X-ray scintillators located within the beam. This luminescence passes through the indicator film, and the spectrum is analyzed to measure chemical concentrations at that location. A pH sensor is demonstrated with a dynamic range between pH 6-9 and noise level of 0.05 pH units using methyl-red dyed pH paper. The location of the interface between two types of scintillator films is obtained with 0.30 mm spatial resolution even though the images are highly blurred by 10 mm of chicken breast. This work has important applications for detecting pH changes on surfaces of implanted medical devices.


Assuntos
Contagem de Cintilação/instrumentação , Raios X , Concentração de Íons de Hidrogênio
4.
Analyst ; 136(17): 3438-45, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21695291

RESUMO

We report a high-spatial resolution imaging technique to measure optical absorption and detect chemical and physical changes on surfaces embedded in thick tissue. Developing sensors to measure chemical concentrations on implanted surfaces through tissue is an important challenge for analytical chemistry and biomedical imaging. Tissue scattering dramatically reduces the resolution of optical imaging. In contrast, X-rays provide high spatial resolution imaging through tissue but do not measure chemical concentrations. We describe a hybrid technique which uses a scanning X-ray beam to irradiate Gd(2)O(2)S scintillators and detect the resulting visible luminescence through the tissue. The amount of light collected is modulated by optical absorption in close proximity to the luminescence source. By scanning the X-ray beam, and measuring total amount of light collected, one can measure the local absorption near scintillators at a resolution limited by the width of luminescence source (i.e. the width of the X-ray excitation beam). For proof of principle, a rectangular 1.7 mm scanning X-ray beam was used to excite a single layer of 8 µm Gd(2)O(2)S particles, and detect the absorption of 5 nm thick silver island film through 10 mm of pork. Lifetime and spectroscopic measurements, as well changing the refractive index of the surroundings indicate that the silver reduces the optical signal through attenuated total internal reflection. The technique was used to image the dissolution of regions of the silver island film which were exposed to 1 mM of H(2)O(2) through 1 cm of pork tissue.


Assuntos
Diagnóstico por Imagem/instrumentação , Gadolínio/química , Medições Luminescentes/instrumentação , Animais , Desenho de Equipamento , Peróxido de Hidrogênio/análise , Prata/análise , Suínos , Raios X
5.
Inorg Chem ; 50(19): 9354-64, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21888339

RESUMO

Alkynyl complexes of the type [M(cyclam)(CCR)(2)]OTf (where cyclam = 1,4,8,11-tetraazacyclotetradecane; M = Rh(III) or Cr(III); and R = phenyl, 4-methylphenyl, 4-trifluoromethylphenyl, 4-fluorophenyl, 1-naphthalenyl, 9-phenanthrenyl, and cyclohexyl) were prepared in 49% to 93% yield using a one-pot synthesis involving the addition of 2 equiv of RCCH and 4 equiv of BuLi to the appropriate [M(cyclam)(OTf)(2)]OTf complex in THF. The cis and trans isomers of the alkynyl complexes were separated using solubility differences, and the stereochemistry was characterized using infrared spectroscopy of the CH(2) rocking and NH bending region. All of the trans-[M(cyclam)(CCR)(2)]OTf complexes exhibit strong Raman bands between 2071 and 2109 cm(-1), ascribed to ν(s)(C≡C). The stretching frequencies for the Cr(III) complexes are 21-28 cm(-1) lower than for the analogous Rh(III) complexes, a result that can be interpreted in terms of the alkynyl ligands acting as π-donors. UV-vis spectra of the Cr(III) and Rh(III) complexes are dominated by strong charge transfer (CT) transitions. In the case of the Rh(III) complexes, these CT transitions obscure the metal centered (MC) transitions, but in the case of the Cr(III) complexes the MC transitions are unobscured and appear between 320 and 500 nm, with extinction coefficients (170-700 L mol(-1) cm(-1)) indicative of intensity stealing from the proximal CT bands. The Cr(III) complexes show long-lived (240-327 µs), structureless, MC emission centered between 731 and 748 nm in degassed room temperature aqueous solution. Emission characteristics are also consistent with the arylalkynyl ligands acting as π-donors. The Rh(III) complexes also display long-lived (4-21 µs), structureless, metal centered emission centered between 524 and 548 nm in degassed room temperature solution (CH(3)CN).

6.
Inorg Chem ; 48(16): 7853-63, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19603801

RESUMO

The selectivity of the rigid ligand PDA (1,10-phenanthroline-2,9-dicarboxylic acid) for some M(III) (M = metal) ions is presented. The structure of [Fe(PDA(H)(1/2))(H(2)O)(3)] (ClO(4))(2).3H(2)O.(1)/(2)H(5)O(2) (1) is reported: triclinic, P1, a = 7.9022(16) A, b = 12.389(3) A, c = 13.031(3) A, alpha = 82.55(3) degrees , beta = 88.41(3) degrees , gamma = 78.27(3) degrees , V = 1238.6(4) A(3), Z = 2, R = 0.0489. The coordination geometry around the Fe(III) is close to a regular pentagonal bipyramid, with Fe-N lengths averaging 2.20 A, which is normal for a 1,10-phenanthroline type of ligand coordinated to seven-coordinate Fe(III). The Fe-O bonds to the carboxylate oxygens average 2.157 A, which is rather long compared to the average Fe-O length of 2.035 A to carboxylates in seven-coordinate Fe(III) complexes. The structure of 1 supports the idea that the Fe(III) is too small for ideal coordination in the cleft of PDA, and the structure shows that the Fe(III) adapts to this by inducing numerous small distortions in the structure of the PDA ligand. The log K(1) values for PDA at 25 degrees C in 0.1 M NaClO(4) were determined by UV spectroscopy with Al(III) (log K(1) = 6.9), Ga(III) (log K(1) = 9.7), In(III) (log K(1) = 19.7), Fe(III) (log K(1) = 20.0), and Bi(III) (log K(1) = 26.2). The low values of log K(1) for PDA with Al(III) and Ga(III) are because these ions are too small for the cleft in PDA, which requires a large metal ion with an ionic radius (r(+)) of 1.0 A. In(III) and Fe(III) (r(+) = 0.86 and 0.72 A for a coordination number (CN) of 7) are somewhat too small for the cleft in PDA but may adapt by increasing the coordination number, which increases the metal ion size, and have high log K(1) values. Very large log K(1) values are found, as expected, for Bi(III) (r(+) = 1.17 A, CN = 8), which fits the cleft quite well. Fluorescence studies show that Y(III) produces the largest CHEF (chelation enhanced fluorescence) effects, followed by La(III) and Lu(III), in the PDA complexes. Metal ions with nonfilled d or f subshells produce very large quenching of the fluorescence, as do heavy-metal ions such as In(III) and Bi(III), which have large spin-orbit coupling effects. The Al(III)/PDA complex produced an intense broad band at longer wavelength than the pi*-pi emissions of the PDA ligand, which is at a maximum at pH 6, and the possibility that this might reflect an exciplex, where one PDA ligand in the Al(III) complex pi-stacks with the excited state of a second PDA ligand, is discussed.


Assuntos
Metais/química , Fenantrolinas/química , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Ligantes , Modelos Moleculares , Conformação Molecular , Espectrometria de Fluorescência , Especificidade por Substrato , Termodinâmica
7.
J Am Chem Soc ; 130(4): 1420-30, 2008 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18177045

RESUMO

The metal ion complexing properties of the ligand DPP (2,9-di-(pyrid-2-yl)-1,10-phenanthroline) were studied by crystallography, fluorimetry, and UV-visible spectroscopy. Because DPP forms five-membered chelate rings, it will favor complexation with metal ions of an ionic radius close to 1.0 A. Metal ion complexation and accompanying selectivity of DPP is enhanced by the rigidity of the aromatic backbone of the ligand. Cd2+, with an ionic radius of 0.96 A, exhibits a strong CHEF (chelation enhanced fluorescence) effect with 10(-8) M DPP, and Cd2+ concentrations down to 10(-9) M can be detected. Other metal ions that cause a significant CHEF effect with DPP are Ca2+ (10(-3) M) and Na+ (1.0 M), whereas metal ions such as Zn2+, Pb2+, and Hg2+ cause no CHEF effect with DPP. The lack of a CHEF effect for Zn2+ relates to the inability of this small ion to contact all four donor atoms of DPP. The structures of [Cd(DPP)2](ClO4)2 (1), [Pb(DPP)(ClO4)2H2O] (2), and [Hg(DPP)(ClO4)2] (3) are reported. The Cd(II) in 1 is 8-coordinate with the Cd-N bonds to the outer pyridyl groups stretched by steric clashes between the o-hydrogens on these outer pyridyl groups and the central aromatic ring of the second DPP ligand. The 8-coordinate Pb(II) in 2 has two short Pb-N bonds to the two central nitrogens of DPP, with longer bonds to the outer N-donors. The coordination sphere around the Pb(II) is completed by a coordinated water molecule, and two coordinated ClO4(-) ions, with long Pb-O bonds to ClO4(-) oxygens, typical of a sterically active lone pair on Pb(II). The Hg(II) in 3 shows an 8-coordinate structure with the Hg(II) forming short Hg-N bonds to the outer pyridyl groups of DPP, whereas the other Hg-N and Hg-O bonds are rather long. The structures are discussed in terms of the fit of large metal ions to DPP with minimal steric strain. The UV-visible studies of the equilibria involving DPP and metal ions gave formation constants that show that DPP has a higher affinity for metal ions with an ionic radius close to 1.0 A, particularly Cd(II), Gd(III), and Bi(III), and low affinity for small metal ions such as Ni(II) and Zn(II). The complexes of several metal ions, such as Cd(II), Gd(III), and Pb(II), showed an equilibrium involving deprotonation of the complex at remarkably low pH values, which was attributed to deprotonation of coordinated water molecules according to: [M(DPP)(H2O)]n+ <==> [M(DPP)(OH)](n-1)+ + H+. The tendency to deprotonation of these DPP complexes at low pH is discussed in terms of the large hydrophobic surface of the coordinated DPP ligand destabilizing the hydration of coordinated water molecules and the build-up of charge on the metal ion in its DPP complex because of the inability of the coordinated DPP ligand to hydrogen bond with the solvent.


Assuntos
Cádmio/química , Corantes Fluorescentes/farmacologia , Fenantrolinas/química , Fenantrolinas/farmacologia , Cálcio/química , Concentração de Íons de Hidrogênio , Íons , Ligantes , Magnésio/química , Metais/química , Modelos Químicos , Conformação Molecular , Prótons , Solventes , Espectrofotometria Ultravioleta/métodos , Água/química
8.
Inorg Chem ; 47(24): 11452-4, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18998626

RESUMO

Arylethynylchromium(III) complexes of the form trans-[Cr(cyclam)(CCC(6)H(4)R)(2)]OTf (where cyclam = 1,4,8,11-tetraazacyclotetradecane, R = H, CH(3), or CF(3) in the para position, and OTf = trifluoromethanesulfonate) have been prepared and characterized by IR spectroscopy and X-ray diffraction. The complexes are emissive with excited-state lifetimes in a deoxygenated fluid solution between 200 and 300 micros.

9.
Chem Commun (Camb) ; (33): 3540-2, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16921438

RESUMO

A Pt(II) molecular square containing four fluxional trithiacrown ligands at the corners is prepared by transition metal-mediated self-assembly.

10.
Chem Commun (Camb) ; (9): 1218-20, 2005 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-15726197

RESUMO

The resonance stabilized bis-thiadiazinyl framework holds potential as a stable and versatile building block for the design of radical-based conductors and magnetic materials.

12.
Dalton Trans ; (40): 8605-15, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19809737

RESUMO

We report the synthesis and full characterization for a series of thiacrown complexes of Pt(II) incorporating the fluxional trithiacrown ligand 1,4,7-trithiacyclononane ([9]aneS3) and several group 15 donors ligands. Reaction of [Pt([9]aneS3)Cl2] with a full stoichiometric equivalent of the group 15 donor (L = 2 x AsPh3, SbPh3 or 1,2-bis(diphenylarsenio) ethane (dpae) followed by metathesis with NH4PF6 yields [Pt([9]aneS3)L](PF6)2. We also report the analogous Pd(II) complex with dpae. Similar reactions of the starting Pt complex with one equivalent of XPh3 (X = As or Sb) result in complexes of the formula [Pt([9]aneS3)(XPh3)(Cl)](PF6). All six new complexes have been fully characterized by multinuclear NMR, IR, and UV-Vis spectroscopies in addition to elemental analysis and single crystal structural determinations. The X-ray structures of each complex indicate an axial M-S interaction formed by the endodentate conformation of the [9]aneS3 ligand. The axial M-S distance is highly dependent upon the ancillary donor set. The axial M-S distance shortens with the identity of the group 15 donor ligand according to the trend, Sb < As < P, due to their increasingly poorer donor qualities. The two bis pnictogen complexes, [Pt([9]aneS3)(AsPh3)2](PF6)2 and [Pt([9]aneS3)(SbPh3)2](PF6)2 form unusual five-coordinate distorted trigonal bipyramids in contrast to the pseudo-five coordinate, elongated square pyramidal structures typically observed in Pt(II) complexes of [9]aneS3. The distortion arises from intramolecular pi-pi interactions between the phenyl rings on the two different triphenyl ligands. Chemical shifts in the 195Pt NMR also show similar periodic relationships which trend progressively upfield as the donor atom becomes larger. As expected, the coordinated [9]aneS3 ligand shows fluxional behavior in its NMR spectra, resulting in a single 13C NMR resonance, despite the asymmetric coordination environment found in both chloro complexes. The line width for the carbon NMR resonance as well as for the 195Pt NMR peak is highly sensitive to the nature of the group 15 donor, with poorer donors such as SbPh3 showing significant line broadening. Measurements from the electronic spectra support that the ligand field strength of the pnictogen donor decreases with its increasing size.

13.
Dalton Trans ; (14): 1872-82, 2008 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-18369494

RESUMO

We report the synthesis and full characterization for a series of cyclometallated complexes of Pt(II) and Pd(II) incorporating the fluxional trithiacrown ligand 1,4,7-trithiacyclononane ([9]aneS3). Reaction of [M(C insertion mark N)(micro-Cl)]2 (M = Pt(II), Pd(II); C insertion mark N = 2-phenylpyridinate (ppy) or 7,8-benzoquinolinate (bzq)) with [9]aneS3 followed by metathesis with NH4PF6 yields [M(C insertion mark N)([9]aneS3)](PF6). The complexes [M(C insertion mark P)([9]aneS3)](PF6) (M = Pt(II), Pd(II); Cinsertion markP = [CH2C6H4P(o-tolyl)2-C,P]-) were synthesized from their respective [Pt(C insertion mark P)(micro-Cl)]2 or [Pd(C insertion mark P)(micro-O2CCH3)]2 (C insertion mark P) starting materials. All five new complexes have been fully characterized by multinuclear NMR, IR and UV-Vis spectroscopies in addition to elemental analysis, cyclic voltammetry, and single-crystal structural determinations. As expected, the coordinated [9]aneS3 ligand shows fluxional behavior in its NMR spectra, resulting in a single 13C NMR resonance despite the asymmetric coordination environment of the cyclometallating ligand. Electrochemical studies reveal irreversible one-electron metal-centered oxidations for all Pt(II) complexes, but unusual two-electron reversible oxidations for the Pd(II) complexes of ppy and bzq. The X-ray crystal structures of each complex indicate an axial M-S interaction formed by the endodentate conformation of the [9]aneS3 ligand. The structure of [Pd(bzq)([9]aneS3)](PF6) exhibits disorder in the [9]aneS3 conformation indicating a rare exodentate conformation as the major contributor in the solid-state structure. DFT calculations on [Pt([9]aneS3)(ppy)](PF6) and [Pd([9]aneS3)(ppy)](PF6) indicate the HOMO for both complexes is primarily dz2 in character with a significant contribution from the phenyl ring of the ppy ligand and p orbital of the axial sulfur donor. In contrast, the calculated LUMO is primarily ppy pi* in character for [Pt([9]aneS3)(ppy)](PF6), but dx2-y2 in character for [Pd([9]aneS3)(ppy)](PF6).


Assuntos
Coronantes/química , Compostos Organometálicos/síntese química , Paládio/química , Platina/química , Compostos de Sulfidrila/química , Cristalografia por Raios X , Eletroquímica , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/química , Espectrofotometria Ultravioleta/métodos , Estereoisomerismo
14.
Dalton Trans ; (45): 5316-21, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18271488

RESUMO

A crystal structure showing an unusual trinuclear Cd(II) cluster bridged in mu3 fashion by a carbonate ligand is reported. The carbonate ion is formed by fixation of atmospheric carbon dioxide from the corresponding cadmium mononuclear complex containing an aza crown ether.

15.
Inorg Chem ; 45(23): 9306-14, 2006 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-17083230

RESUMO

The metal ion-complexing properties of 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) are reported. The protonation constants (pK1 = 4.75, pK2 = 2.53) and formation constants (log K(1)) for PDA with Mg(II) (3.53), Ca(II) (7.3), Sr(II) (5.61), Ba(II) (5.43), La(III) (13.5), Gd(III) (16.1), Zn(II) (11.0), Cd(II) (12.8), Pb(II) (11.4), and Cu(II) (12.8) were determined by UV-vis spectroscopy in 0.1 M NaClO4 at 25 degrees C. The log K(1) values for most of these metal ions were high enough that they were not displaced from their PDA complexes even at pH 2. The log K(1) values were determined using the UV spectra to monitor the competition with EDTA (or DTPA; EDTA = ethylendiamine tetraacetic acid, DTPA = diethylenetriamine pentaacetic acid) as a function of pH according to the equilibrium: M(EDTA) + PDA + nH+ = M(PDA) + EDTAHn. The log K1 values indicate that the rigid extended aromatic backbone of PDA leads to high levels of ligand preorganization and selectivity toward large metal ions (e.g., Ca(II), Cd(II), Gd(III)) with an ionic radius of about 1.0 A and greatly enhanced thermodynamic stability as compared to similar ligands without the reinforcing aromatic backbone. The structure of [Ca(PDA)(H2O)2].2H2O (1) is reported: orthorhombic, Fdd2, a = 44.007(9) A, b = 18.945(4) A, c = 7.2446(14) A, V = 6040(2) A(3), Z = 16, R = 0.0882. The Ca(II) ion has a coordination number of eight, lying in the plane of the tetradentate PDA, with Ca-N bonds averaging 2.55 A and Ca-O bonds to the two acetate groups of PDA averaging 2.45 A. These are very close to the normal Ca-L bonds of this type, supporting the idea that a metal ion the size of Ca(II) (ionic radius approximately 1.0 A) will fit into PDA in a low-strain manner. The remaining four coordination sites on Ca(II) in 1 come from two coordinated water molecules and a chelating carboxylate bridging from an adjacent [Ca(PDA)(H2O)2].2H2O complex. Potential applications of PDA as a ligand in biomedical applications such as Gd(III) contrast agents in MRI are discussed.


Assuntos
Compostos Macrocíclicos/química , Metais/química , Cálcio/química , Quelantes/química , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Ligantes , Modelos Moleculares , Estrutura Molecular , Fenantrolinas/química , Termodinâmica , Água/química
16.
Dalton Trans ; (16): 2001-7, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16609771

RESUMO

The metal ion coordinating properties of ntam (nitrilotriacetamide) are reported. The protonation constant (pK) for ntam is 2.6 in 0.1 M NaClO(4) at 25 degrees C. Formation constants (log K(1)) in 0.1 M NaClO(4) at 25 degrees C, determined by (1)H NMR and UV-Vis spectroscopy are: Ca(II), 1.28; Mg(II), 0.4; La(III), 2.30; Pb(II), 3.69; Cd(II), 3.78; Ni(II), 2.38; Cu(II), 3.16. The measured log K(1) values for the ntam complexes are discussed in terms of the low basicity of the N-donor, as evidenced by the pK, and the effect of metal ion size on complex stability. The amide O-donors of ntam lead to the stabilization of complexes of large metal ions (Pb(II), Cd(II), La(III), Ca(II)) relative to log K1 for the NH3 complexes, while for small metal ions (Ni(II), Cu(II)) the amide O-donors lead to destabilization. This is discussed in terms of the role of chelate ring size in controlling metal ion size-based selectivity. The structures of [Pb(ntam)(NO3)2]2 (1) and [Ca2(ntam)3(H2O)2](ClO4)4.3H2O (2) are reported. For 1: triclinic, space group P1, a = 7.4411(16), b = 9.0455(19), c = 11.625(3) A, alpha = 69.976(4), beta = 79.591(4), gamma = 67.045(3) degrees, Z = 2, R = 0.0275. For 2: monoclinic, space group P2(1)/c, a = 10.485(2), b = 11.414(2), c = 38.059(8) A, beta = 92.05(3) degrees, Z = 4, R = 0.0634. Structure 1 is dimeric with two Pb atoms linked by bridging O-donors from the two ntam ligands. The coordination sphere consists of one N-donor and 3 O-donors from the ntam ligand, two O-donors from nitrates, and one bridging O-donor. The variation in bond length suggests a stereochemically active lone pair of electrons on the Pb. Structure 2 consists of two Ca(II) ions held together by 3 bridging O-donors from ntam groups. One Ca is 9-coordinate with two ntam ligands present, plus one bridging O-donor from the other Ca(II) ntam complex. The other Ca is 8-coordinate, with a single coordinated ntam, plus two coordinated H2O molecules, and two bridging O-donors from the other half of the complex. The role of M-O=C bond angles in controlling selectivity for metal ions on the basis of their size is discussed.


Assuntos
Acetamidas/química , Amidas/química , Metais/química , Compostos Organometálicos/química , Oxigênio/química , Termodinâmica , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química
17.
Inorg Chem ; 44(23): 8182-4, 2005 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-16270950

RESUMO

A unique trinuclear cluster containing two short Pt-->Ag dative bonds was prepared and characterized crystallographically. Two monocationic orthometalated Pt(II) complexes containing 2-phenylpyridine and the tridentate ligand 9S3 (1,4,7-trithiacyclononane) exhibit axial sulfur interactions with Pt as well as short dative bonds. The Pt-->Ag dative bonding results in a dramatic shortening of the axial Pt-S distance in each Pt complex cation, relative to the mononuclear Pt complex. Evidence for Pt-Ag interactions in solution is also presented.

18.
Inorg Chem ; 44(16): 5696-705, 2005 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16060620

RESUMO

We wish to report the first measurements of (199)Hg NMR chemical shift data for a series of homoleptic Hg(II) complexes with thiacrown ligands and related aza and mixed thia/aza macrocycles. In mercury(II) complexes containing trithiacrown through hexathiacrown ligands, we observed (199)Hg NMR chemical shifts in the range of -298 to -1400 ppm. Upfield chemical shifts in these NMR spectra are seen whenever (a) the number of thioether sulfur donors in the complex is decreased, (b) a thioether sulfur donor is replaced by a secondary nitrogen donor, and (c) the size of the macrocycle ring increases without a change in the nature or number of the donor atoms. Changes in noncoordinating anions, such as hexafluorophosphate and perchlorate, have little effect on the (199)Hg chemical shift. For several complexes, we observed (3)J((199)Hg-(1)H) coupling in the range of 50-100 Hz, the first example of proton-mercury coupling through a C-S thioether bond. Also, we obtained unusual upfield (13)C NMR chemical shifts for methylene resonances in several of the thiacrown complexes which correspond to distortions within the five- and six-membered chelate rings bound to the mercury ion. We report the X-ray crystal structure of the complex [Hg(18S6)](PF(6))(2) (18S6 = 1,4,7,10,13,16-hexathiacyclooctadecane). The molecule crystallizes in the rare trigonal space group Pm1 with hexakis(thioether) coordination around the Hg(II) center confirming previous X-ray photoemission spectroscopic data on the compound. The lack of an observable (199)Hg NMR signal for the complex is the result of the identical length (2.689(2) Angstroms) of all six Hg-S bonds. We additionally report the X-ray structure of the complex [Hg(9N3)(2)](ClO(4))(2) (9N3 = 1,4,7-triazacyclononane) which shows hexakis(amine) coordination of the 9N3 to form a distorted trigonal prismatic structure. Solution dissociation of the one of the 9N3 ligands from the mercury ion is confirmed by multinuclear NMR experiments. For six-coordinate macrocyclic Hg(II) complexes, N6 donor sets have a preference for trigonal prisms while S6 donor sets favor octahedral structures.

19.
Inorg Chem ; 44(23): 8495-502, 2005 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-16270989

RESUMO

The metal-ion complexing properties of the ligand EDTAM (ethylenediamine-N,N,N',N'-tetraacetamide) are investigated as a model for the role of amide oxygen donors in the binding sites of Ca-binding proteins. The structures of the complexes [Ca(EDTAM)NO3]NO3 (1), [La(EDTAM)(H2O)4](NO3)3.H2O (2), and [Cd(EDTAM)(NO3)]NO3 (3) are reported: 1 monoclinic, P2(1)/c, a = 10.853(2) angstroms, b = 12.893(3) angstroms, c = 13.407(3) angstroms, beta = 103.28(3) degrees, Z = 4, R = 0.0281; 2 triclinic, P, a = 8.695(2) angstroms, b = 9.960(2) angstroms, c = 16.136(3) angstroms, alpha = 95.57(3) degrees, beta = 94.84(3) degrees, gamma = 98.72(3) degrees, Z = 2, R = 0.0394; 3 monoclinic, P2(1)/c, a = 10.767(2) angstroms, b = 12.952(2) angstroms, c = 13.273(2) angstroms, beta = 103.572(3) degrees, Z = 4, R = 0.0167. Compounds 1 and 3 are isostructural, and the EDTAM binds to the metal ion through its two N-donors and four O-donors from the amide groups. Ca(II) in 1 is 8-coordinate with a chelating NO3- group, while Cd(II) in 3 may possibly be 7-coordinate, with an asymmetrically coordinated NO3- that is best regarded as unidentate. The La(III) in 2 is coordinated to the EDTAM in a manner similar to that of 1 and 3, but it is 10-coordinate with four water molecules coordinated to the La(III). The formation constants (log K1) for complexes of a variety of metal ions with EDTAM are reported in 0.1 M NaNO3 at 25.0 +/- 0.1 degrees C. These are compared to the log K1 values for en (ethylenediamine) and THPED (N,N,N',N'-tetrakis(2-hydroxypropyl)-ethylenediamine). For large metal ions, such as Ca2+ or La3+, log K1 increases strongly when the four acetamide groups are added to en to give EDTAM, whereas for a small metal ion, such as Mg2+, this increase is small. The log K1 values for EDTAM compared to THPED suggest that the amide oxygen is a much stronger base than the alcoholic oxygen. Structures of binding sites in 40 Ca-binding proteins are examined. It is shown that the Ca-O=C bond angles involving coordinated amides in these sites are large, commonly being in the 150-180 degrees range. This is discussed in terms of the idea that for purely ionic bonding the M-O=C bond angle will approach 180 degrees, while for covalent bonding the angle should be closer to 120 degrees. How this fact might be used by the proteins to control selectivity for different metal ions is discussed.


Assuntos
Amidas/química , Proteínas de Ligação ao Cálcio/química , Cálcio/química , Etilenodiaminas/química , Sítios de Ligação , Proteínas de Ligação ao Cálcio/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Especificidade por Substrato , Termodinâmica
20.
J Am Chem Soc ; 125(13): 3799-812, 2003 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-12656613

RESUMO

A series of donor-substituted 1,3,5-triaryl-2-pyrazoline fluorophores were structurally characterized by X-ray analysis, and their photophysical properties studied by steady-state absorption and emission spectroscopy. The photoinduced electron-transfer thermodynamics of the derivatives was estimated on the basis of the spectroscopic data and redox potentials of the fluorophores. The aryl substituents in the 1- and 3-position of the pyrazoline ring influence the photophysical properties of the fluorophores in distinctly different ways. The excited-state equilibrium energy DeltaE(00) is primarily influenced by changes of the substituent in the 1-position, whereas the reduction potential of the fluorophore is essentially determined by the 3-aryl group. Density functional calculations were used to probe the electronic structure and energy ordering of the emissive and the electron-transfer state. The results from the computational analysis agree qualitatively well with the experimental data. In addition, we have evaluated a water soluble pyrazoline derivative in vivo as a potential intracellular pH probe. Membrane permeability, low toxicity, and high quantum yield render the fluorophore attractive for biological applications.


Assuntos
Corantes Fluorescentes/química , Pirazóis/química , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Elétrons , Corantes Fluorescentes/farmacocinética , Células HeLa , Humanos , Lipossomos/química , Modelos Moleculares , Estrutura Molecular , Oxirredução , Fotoquímica , Potenciometria , Pirazóis/farmacocinética , Teoria Quântica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Coloração e Rotulagem , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA