Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Econ Entomol ; 114(5): 1917-1926, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34180512

RESUMO

New Zealand apple exports must meet strict phytosanitary measures to eliminate codling moth (Cydia pomonella Linnaeus) (Lepidoptera: Tortricidae) larval infestation. This study was part of a program attempting the localized eradication of codling moth within an isolated cluster of seven orchards (391 ha). A conventional management program of insecticide sprays and pheromone mating disruption was supplemented with weekly releases of sterile moths for 1-6 yr. Our objective was to compare the recapture rate of sterile moths following their release by four methods, and the efficiency of each system. The methods were the following: a fixed-wing unmanned plane flying ~40-45 m high at 70 km/h, an unmanned hexacopter travelling 20 m high at 25 km/h, and manually from the ground via bicycles or motor vehicles. The different release methods were used in different years or weeks. Sterile male moths were recaptured in grids of pheromone traps positioned throughout each orchard. The highest recapture rate followed delivery by hexacopter, then bicycle, vehicle, and plane. There was a 17-fold difference in catches between releases by hexacopter and plane, and sixfold between vehicle and plane in the same season. Bicycle delivery had a 3.5-fold higher recapture rate than the plane in different years. The wind-borne horizontal drift of moths was investigated as a possible explanation for the disparity of recaptures between the two aircraft delivery systems. The methods in ascending order of time per hectare for delivery were the following: plane and vehicle, hexacopter, then bicycle. The advantages and disadvantages of each moth delivery method are discussed.


Assuntos
Malus , Mariposas , Atrativos Sexuais , Animais , Controle de Insetos , Feromônios
2.
J Econ Entomol ; 111(3): 1056-1068, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29546368

RESUMO

Conservation biological control can be an effective tactic for minimizing insect-induced damage to agricultural production. In the Arizona cotton system, a suite of generalist arthropod predators provides critical regulation of Bemisia tabaci Gennadius (MEAM1) (Hemiptera: Aleyrodidae) and other pests. Arthropod predator and B. tabaci populations were manipulated with a range of broad-spectrum and selective insecticide exclusions to vary predator to prey interactions in a 2-yr field study. Predator to prey ratios associated with B. tabaci densities near the existing action threshold were estimated for six predator species found to be negatively associated with either adult and/or large nymphs of B. tabaci [Misumenops celer (Hentz) (Araneae: Thomisidae), Drapetis nr divergens (Diptera: Empididae), Geocoris pallens Stäl (Hemiptera: Geocoridae), Orius tristicolor (White) (Hemiptera: Anthocoridae), Chrysoperla carnea s.l. (Neuroptera: Chrysopidae), and Collops spp. (Coleoptera: Melyridae)] with the first three most consistently associated with declining B. tabaci densities. Ratios ranged from 1 M. celer per 100 sweeps to 1 B. tabaci adult per leaf to 44 D. nr. divergens per 100 sweeps to 1 large nymph per leaf disk. These ratios represent biological control informed thresholds that might serve as simple-to-use decision tool for reducing risk in the current B. tabaci integrated pest management strategy. The identification of key predators within the large, flexible food web of the cotton agro-ecosystem and estimation of predator to B. tabaci ratios clarifies the role of key predators in B. tabaci suppression, yielding potential decision-making advantages that could contribute to further improving economic and environmental sustainability of insect management in the cotton system.


Assuntos
Conservação dos Recursos Naturais/métodos , Tomada de Decisões , Cadeia Alimentar , Hemípteros/fisiologia , Controle Biológico de Vetores/métodos , Animais , Arizona , Gossypium/crescimento & desenvolvimento , Inseticidas/administração & dosagem , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA