Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Infect Dis ; 20(1): 226, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32183745

RESUMO

BACKGROUND: Rapid control of cholera outbreaks is a significant challenge in overpopulated urban areas. During late-2017, Kinshasa, the capital of the Democratic Republic of the Congo, experienced a cholera outbreak that showed potential to spread throughout the city. A novel targeted water and hygiene response strategy was implemented to quickly stem the outbreak. METHODS: We describe the first implementation of the cluster grid response strategy carried out in the community during the cholera outbreak in Kinshasa, in which response activities targeted cholera case clusters using a grid approach. Interventions focused on emergency water supply, household water treatment and safe storage, home disinfection and hygiene promotion. We also performed a preliminary community trial study to assess the temporal pattern of the outbreak before and after response interventions were implemented. Cholera surveillance databases from the Ministry of Health were analyzed to assess the spatiotemporal dynamics of the outbreak using epidemic curves and maps. RESULTS: From January 2017 to November 2018, a total of 1712 suspected cholera cases were reported in Kinshasa. During this period, the most affected health zones included Binza Météo, Limeté, Kokolo, Kintambo and Kingabwa. Following implementation of the response strategy, the weekly cholera case numbers in Binza Météo, Kintambo and Limeté decreased by an average of 57% after 2 weeks and 86% after 4 weeks. The total weekly case numbers throughout Kinshasa Province dropped by 71% 4 weeks after the peak of the outbreak. CONCLUSION: During the 2017-2018 period, Kinshasa experienced a sharp increase in cholera case numbers. To contain the outbreak, water supply and hygiene response interventions targeted case households, nearby neighbors and public areas in case clusters using a grid approach. Following implementation of the response, the outbreak in Kinshasa was quickly brought under control. A similar approach may be adapted to quickly interrupt cholera transmission in other urban settings.


Assuntos
Cólera/epidemiologia , Abastecimento de Água/métodos , Cólera/prevenção & controle , Cidades , República Democrática do Congo/epidemiologia , Surtos de Doenças/prevenção & controle , Água Potável/química , Água Potável/microbiologia , Características da Família , Feminino , Humanos , Higiene , Controle de Infecções/métodos , Masculino , Purificação da Água
2.
PLoS Med ; 12(10): e1001893, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26506001

RESUMO

BACKGROUND: The eastern provinces of the Democratic Republic of the Congo have been identified as endemic areas for cholera transmission, and despite continuous control efforts, they continue to experience regular cholera outbreaks that occasionally spread to the rest of the country. In a region where access to improved water sources is particularly poor, the question of which improvements in water access should be prioritized to address cholera transmission remains unresolved. This study aimed at investigating the temporal association between water supply interruptions and Cholera Treatment Centre (CTC) admissions in a medium-sized town. METHODS AND FINDINGS: Time-series patterns of daily incidence of suspected cholera cases admitted to the Cholera Treatment Centre in Uvira in South Kivu Province between 2009 and 2014 were examined in relation to the daily variations in volume of water supplied by the town water treatment plant. Quasi-poisson regression and distributed lag nonlinear models up to 12 d were used, adjusting for daily precipitation rates, day of the week, and seasonal variations. A total of 5,745 patients over 5 y of age with acute watery diarrhoea symptoms were admitted to the CTC over the study period of 1,946 d. Following a day without tap water supply, the suspected cholera incidence rate increased on average by 155% over the next 12 d, corresponding to a rate ratio of 2.55 (95% CI: 1.54-4.24), compared to the incidence experienced after a day with optimal production (defined as the 95th percentile-4,794 m3). Suspected cholera cases attributable to a suboptimal tap water supply reached 23.2% of total admissions (95% CI 11.4%-33.2%). Although generally reporting less admissions to the CTC, neighbourhoods with a higher consumption of tap water were more affected by water supply interruptions, with a rate ratio of 3.71 (95% CI: 1.91-7.20) and an attributable fraction of cases of 31.4% (95% CI: 17.3%-42.5%). The analysis did not suggest any association between levels of residual chlorine in the water fed to the distribution network and suspected cholera incidence. Laboratory confirmation of cholera was not available for this analysis. CONCLUSIONS: A clear association is observed between reduced availability of tap water and increased incidence of suspected cholera in the entire town of Uvira in Eastern Democratic Republic of the Congo. Even though access to piped water supplies is low in Uvira, improving the reliability of tap water supply may substantially reduce the incidence of suspected cholera, in particular in neighbourhoods having a higher access to tap water. These results argue in favour of water supply investments that focus on the delivery of a reliable and sustainable water supply, and not only on point-of-use water quality improvements, as is often seen during cholera outbreaks.


Assuntos
Cólera/epidemiologia , Microbiologia da Água , Abastecimento de Água/normas , Adolescente , Adulto , Criança , República Democrática do Congo/epidemiologia , Surtos de Doenças , Feminino , Humanos , Incidência , Análise de Séries Temporais Interrompida , Masculino , Qualidade da Água
3.
Pan Afr Med J ; 46: 96, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38405090

RESUMO

A resurgence in cholera cases has been observed throughout Africa during the first half of 2023. Among the many factors that drive cholera transmission, the ongoing climate phenomenon El Niño is likely to continue until March to May 2024. To prevent further cholera spread, it is critical to strengthen cholera control efforts in Africa.


Assuntos
Cólera , Humanos , Cólera/epidemiologia , Cólera/prevenção & controle , El Niño Oscilação Sul , África/epidemiologia , Surtos de Doenças
4.
J Microbiol Methods ; 133: 23-31, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28007529

RESUMO

Cholera is now considered to be endemic in Haiti, often with increased incidence during rainy seasons. The challenge of cholera surveillance is exacerbated by the cost of sample collection and laboratory analysis. A diagnostic tool is needed that is low cost, easy-to-use, and able to detect and quantify Vibrio cholerae accurately in water samples within 18-24h, and perform reliably in remote settings lacking laboratory infrastructure and skilled staff. The two main objectives of this study were to develop and evaluate a new culture medium embedded in a new diagnostic tool (PAD for paper based analytical device) for detecting Vibrio cholerae from water samples collected in Haiti. The intent is to provide guidance for corrective action, such as chlorination, for water positive for V. cholerae epidemic strains. For detecting Vibrio cholerae, a new chromogenic medium was designed and evaluated as an alternative to thiosulfate citrate bile salts sucrose (TCBS) agar for testing raw water samples. Sensitivity and specificity of the medium were assessed using both raw and spiked water samples. The Vibrio cholerae chromogenic medium was proved to be highly selective against most of the cultivable bacteria in the water samples, without loss of sensitivity in detection of V. cholerae. Thus, reliability of this new culture medium for detection of V. cholerae in the presence of other Vibrio species in water samples offers a significant advantage. A new paper based device containing the new chromogenic medium previously evaluated was compared with reference methods for detecting V. cholerae from spiked water sample. The microbiological PAD specifications were evaluated in Haiti. More precisely, a total of 185 water samples were collected at five sites in Haiti, June 2014 and again in June 2015. With this new tool, three V. cholerae O1 and 17 V. cholerae non-O1/O139 strains were isolated. The presence of virulence-associated and regulatory genes, including ctxA, zot, ace, and toxR, was confirmed using multiplex PCR. The three V. cholerae O1 isolates were positive for three of the four virulence-associated and regulatory genes. Twelve of the V. cholerae non-O1/O139 isolates were found to carry toxR, but none were ctxA+, zot+, or ace+. However, six of the V. cholerae non-O1/O139 isolates were resistant to penicillin, ampicillin, trimethoprim/sulfamethoxazole, nalidixic acid, and ciprofloxacin. The paper based analytical device (PAD) provides advantages in that standard culture methods employing agar plates are not required. Also, intermediary isolation steps were not required, including transfer to selective growth media, hence these steps being omitted reduced time to results. Furthermore, experienced technical skills also were not required. Thus, PAD is well suited for resource-limited settings.


Assuntos
Técnicas Bacteriológicas/instrumentação , Meios de Cultura/química , DNA Bacteriano/isolamento & purificação , Vibrio cholerae/isolamento & purificação , Microbiologia da Água , Cólera/epidemiologia , Contagem de Colônia Microbiana , Análise Custo-Benefício , Água Potável/microbiologia , Farmacorresistência Bacteriana Múltipla , Água Doce/microbiologia , Haiti/epidemiologia , Papel , Reprodutibilidade dos Testes , Água do Mar/microbiologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA