Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Immun Ageing ; 20(1): 64, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986079

RESUMO

BACKGROUND: The spaceflight environment is an extreme environment that affects the immune system of approximately 50% of astronauts. With planned long-duration missions, such as the deployment of the Lunar Gateway and possible interplanetary missions, it is mandatory to determine how all components of the immune system are affected, which will allow the establishment of countermeasures to preserve astronaut health. However, despite being an important component of the immune system, antibody-mediated humoral immunity has rarely been investigated in the context of the effects of the space environment. It has previously been demonstrated that 30 days aboard the BION-M1 satellite and 21 days of hindlimb unloading (HU), a model classically used to mimic the effects of microgravity, decrease murine B lymphopoiesis. Furthermore, modifications in B lymphopoiesis reported in young mice subjected to 21 days of HU were shown to be similar to those observed in aged mice (18-22 months). Since the primary antibody repertoire composed of IgM is created by V(D) J recombination during B lymphopoiesis, the objective of this study was to assess the degree of similarity between changes in the bone marrow IgM repertoire and in the V(D)J recombination process in 2.5-month-old mice subjected to 21 days of HU and aged (18 months) mice. RESULTS: We found that in 21 days, HU induced changes in the IgM repertoire that were approximately 3-fold less than those in aged mice, which is a rapid effect. Bone remodeling and epigenetics likely mediate these changes. Indeed, we previously demonstrated a significant decrease in tibial morphometric parameters from day 6 of HU and a progressive reduction in these parameters until day 21 of HU, and it has been shown that age and microgravity induce epigenetic changes. CONCLUSION: These data reveal novel immune changes that are akin to advanced aging and underline the importance of studying the effects of spaceflight on antibody-mediated humoral immunity.

2.
FASEB J ; 34(12): 16144-16162, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047384

RESUMO

Immune dysregulation is among the main adverse outcomes of spaceflight. Despite the crucial role of the antibody repertoire in host protection, the effects of spaceflight on the human antibody repertoire are unknown. Consequently, using high-throughput sequencing, we examined the IgM repertoire of five cosmonauts 25 days before launch, after 64 ± 11 and 129 ± 20 days spent on the International Space Station (ISS), and at 1, 7, and 30 days after landing. This is the first study of this kind in humans. Our data revealed that the IgM repertoire of the cosmonauts was different from that of control subjects (n = 4) prior to launch and that two out the five analyzed cosmonauts presented significant changes in their IgM repertoire during the mission. These modifications persisted up to 30 days after landing, likely affected the specificities of IgM binding sites, correlated with changes in the V(D)J recombination process responsible for creating antibody genes, and coincided with a higher stress response. These data confirm that the immune system of approximately half of the astronauts who spent 6 months on the ISS is sensitive to spaceflight conditions, and reveal individual responses indicating that personalized approaches should be implemented during future deep-space exploration missions that will be of unprecedented durations.


Assuntos
Imunoglobulina M/imunologia , Adulto , Astronautas , Humanos , Estudos Longitudinais , Masculino , Voo Espacial/métodos , Fatores de Tempo , Ausência de Peso
3.
FASEB J ; 33(1): 896-908, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052484

RESUMO

Spaceflights are known to affect the immune system. In a previous study, we demonstrated that hypergravity exposure during murine development modified 85% of the T-cell receptor (TCR)-ß repertoire. In this study, we investigated whether socioenvironmental stressors encountered during space missions affect T lymphopoiesis and the TCR-ß repertoire. To address this question, pregnant mice were subjected throughout gestation to chronic unpredictable mild stressors (CUMS), a model used to mimic socioenvironmental stresses encountered during space missions. Then, newborn T lymphopoiesis and the TCR-ß repertoire were studied by flow cytometry and high-throughput sequencing, respectively. No change in thymocyte maturation or TCR expression were noted. TCR-ß repertoire analysis revealed that 75% of neonate TCR-ß sequences resulted from the expression of 3 variable (V)ß segments and that this core repertoire was not affected by CUMS. However, the minor repertoire, representing 25% of the global repertoire, was sensitive to CUMS exposure. We also showed that the variable (diversity) joining [V(D)J] recombination process was unlikely to be affected. Finally, we noted that the CUMS neonatal minor repertoire was more self-reactive than the one of control pups. These findings show that socioenvironmental stressors such as those encountered during space missions affect a fraction (25%) of the TCR-ß repertoire and that these stressors could increase self-reactivity.-Fonte, C., Kaminski, S., Vanet, A., Lanfumey, L., Cohen-Salmon, C., Ghislin, S., Frippiat, J.-P. Socioenvironmental stressors encountered during spaceflight partially affect the murine TCR-ß repertoire and increase its self-reactivity.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Voo Espacial , Estresse Fisiológico , Estresse Psicológico , Animais , Animais Recém-Nascidos , Corticosterona/sangue , Feminino , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Linfopoese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Linfócitos T/citologia , Linfócitos T/imunologia , Recombinação V(D)J
4.
Bioinformatics ; 30(4): 578-80, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24336644

RESUMO

SUMMARY: Daily, mutability and recombination of RNA viruses result in the production of million variants. All these rapid genomic changes directly influence the functional sites of the protein, its 3D structure or its drug resistances. Therefore, it is important to simulate these drastic switches to determine their effects on virus populations. Many computer programs are able to simulate specific variations in DNA genomes, but are generally non-adapted to RNA viruses. They simulate site-specific selection pressures, but rarely pressures on covariant or on higher order correlated sites and no at all on synthetic lethal groups. That is why we felt it important to create VIRAPOPS, a forward simulator that models specific RNA virus functions. It was designed for computational biologists, biologists and virologists. AVAILABILITY AND IMPLEMENTATION: Free binaries are available through a software repository at http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html.


Assuntos
Biologia Computacional , Evolução Molecular , Variação Genética/genética , Genoma Viral , Vírus de RNA/genética , Seleção Genética/genética , Software , Antivirais/uso terapêutico , Simulação por Computador , Genômica , HIV/classificação , HIV/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/virologia , Humanos , Vírus de RNA/classificação , Proteínas Virais/genética
5.
J Med Chem ; 66(6): 3664-3702, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36857133

RESUMO

The most advanced antiviral molecules addressing major SARS-CoV-2 targets (Main protease, Spike protein, and RNA polymerase), compared with proteins of other human pathogenic coronaviruses, may have a short-lasting clinical efficacy. Accumulating knowledge on the mechanisms underlying the target structural basis, its mutational progression, and the related biological significance to virus replication allows envisaging the development of better-targeted therapies in the context of COVID-19 epidemic and future coronavirus outbreaks. The identification of evolutionary patterns based solely on sequence information analysis for those targets can provide meaningful insights into the molecular basis of host-pathogen interactions and adaptation, leading to drug resistance phenomena. Herein, we will explore how the study of observed and predicted mutations may offer valuable suggestions for the application of the so-called "synthetic lethal" strategy to SARS-CoV-2 Main protease and Spike protein. The synergy between genetics evidence and drug discovery may prioritize the development of novel long-lasting antiviral agents.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , COVID-19/epidemiologia , Glicoproteína da Espícula de Coronavírus , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Descoberta de Drogas
6.
J Phys Chem B ; 123(3): 582-592, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30590925

RESUMO

The RNA virus influenza A is a serious public health problem, with epidemics resulting in more than 250 000 deaths every year. A protein cavity was identified on the HA2 subunit of the hemagglutinin responsible for the entry of the virus into the host cell by endocytosis. The binding of a ligand in this zone rich in invariant residues and synthetic lethal couples could prevent therapeutic escape and inhibit the conformational change at pH = 5 which is necessary to initiate the membrane fusion in the endosome. Two pentapeptides, a linear peptide (EQRRS) and a cyclic peptide (DQRRD), have been proposed as potential ligands. Complex stability and the interactions between the ligand and the protein have been studied with the help of molecular dynamics and quantum chemistry methods. A high stability of the interactions has been obtained for these two ligands at both pH = 7 and pH = 5. Indeed, these two peptides present two cooperative modes of action that should prevent the conformational change at the origin of the spring-loaded mechanism at pH = 5, (1) mechanical because they are docked on HA2 and (2) electronic because they modify the protonation states of key residues in the loop. This study thus paves the way toward the development of peptide ligands that can inhibit the membrane fusion process.


Assuntos
Antivirais/farmacologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Antivirais/metabolismo , Antivirais/toxicidade , Cães , Desenho de Fármacos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Células Madin Darby de Rim Canino , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Peptídeos/toxicidade , Ligação Proteica , Alinhamento de Sequência
7.
Viruses ; 9(3)2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28257108

RESUMO

The pathogenicity of the different flu species is a real public health problem worldwide. To combat this scourge, we established a method to detect drug targets, reducing the possibility of escape. Besides being able to attach a drug candidate, these targets should have the main characteristic of being part of an essential viral function. The invariance groups that are sets of residues bearing an essential function can be detected genetically. They consist of invariant and synthetic lethal residues (interdependent residues not varying or slightly varying when together). We analyzed an alignment of more than 10,000 hemagglutinin sequences of influenza to detect six invariance groups, close in space, and on the protein surface. In parallel we identified five potential pockets on the surface of hemagglutinin. By combining these results, three potential binding sites were determined that are composed of invariance groups located respectively in the vestigial esterase domain, in the bottom of the stem and in the fusion area. The latter target is constituted of residues involved in the spring-loaded mechanism, an essential step in the fusion process. We propose a model describing how this potential target could block the reorganization of the hemagglutinin HA2 secondary structure and prevent viral entry into the host cell.


Assuntos
Antivirais/isolamento & purificação , Sequência Conservada , Genes Essenciais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Orthomyxoviridae/efeitos dos fármacos , Orthomyxoviridae/fisiologia , Antivirais/farmacologia , Sítios de Ligação , Descoberta de Drogas/métodos , Conformação Proteica , Virologia/métodos
8.
Biol Direct ; 10: 17, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25888435

RESUMO

BACKGROUND: RNA viruses rapidly accumulate genetic variation, which can give rise to synthetic lethal (SL) and deleterious (SD) mutations. Synthetic lethal mutations (non-lethal when alone but lethal when combined in one genome) have been studied to develop cancer therapies. This principle can also be used against fast-evolving RNA-viruses. Indeed, targeting protein sites involved in SD + SL interactions with a drug would render any mutation of such sites, lethal. RESULTS: Here, we set up a strategy to detect intragenic pairs of SL and SD at the surface of the protein to predict less escapable drug target sites. For this, we detected SD + SL, studying HIV protease (PR) and reverse transcriptase (RT) sequence alignments from two groups of VIH(+) individuals: treated with drugs (T) or not (NT). Using a series of statistical approaches, we were able to propose bona fide SD + SL couples. When focusing on spatially close co-variant SD + SL couples at the surface of the protein, we found 5 SD + SL groups (2 in the protease and 3 in the reverse transcriptase), which could be good candidates to form pockets to accommodate potential drugs. CONCLUSIONS: Thus, designing drugs targeting these specific SD + SL groups would not allow the virus to mutate any residue involved in such groups without losing an essential function. Moreover, we also show that the selection pressure induced by the treatment leads to the appearance of new mutations, which change the mutational landscape of the protein. This drives the existence of differential SD + SL couples between the drug-treated and non-treated groups. Thus, new anti-viral drugs should be designed differently to target such groups.


Assuntos
Biologia Computacional/métodos , Desenho de Fármacos , Farmacorresistência Viral/efeitos dos fármacos , HIV-1/genética , Mutação , Algoritmos , Sítios de Ligação , Infecções por HIV/tratamento farmacológico , Protease de HIV/química , HIV-1/efeitos dos fármacos , Humanos , Desequilíbrio de Ligação , Peptídeo Hidrolases/química , Filogenia , Estrutura Terciária de Proteína , Proteínas/química , DNA Polimerase Dirigida por RNA/química
9.
Source Code Biol Med ; 9: 18, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25183993

RESUMO

BACKGROUND: For over 400 years, due to the reassortment of their segmented genomes, influenza viruses evolve extremely quickly and cause devastating epidemics. This reassortment arises because two flu viruses can infect the same cell and therefore the new virions' genomes will be composed of segment reassortments of the two parental strains. A treatment developed against parents could then be ineffective if the virions' genomes are different enough from their parent's genomes. It is therefore essential to simulate such reassortment phenomena to assess the risk of apparition of new flu strain. FINDINGS: So we decided to upgrade the forward simulator VIRAPOPS, containing already the necessary options to handle non-segmented viral populations. This new version can mimic single or successive reassortments, in birds, humans and/or swines. Other options such as the ability to treat populations of positive or negative sense viral RNAs, were also added. Finally, we propose output options giving statistics of the results. CONCLUSION: In this paper we present a new version of VIRAPOPS which now manages the viral segment reassortments and the negative sense single strain RNA viruses, these two issues being the cause of serious public health problems.

10.
J Mol Endocrinol ; 52(1): R17-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24049064

RESUMO

Forkhead box L2 (FOXL2) is a gene encoding a forkhead transcription factor preferentially expressed in the ovary, the eyelids and the pituitary gland. Its germline mutations are responsible for the blepharophimosis ptosis epicanthus inversus syndrome, which includes eyelid and mild craniofacial defects associated with primary ovarian insufficiency. Recent studies have shown the involvement of FOXL2 in virtually all stages of ovarian development and function, as well as in granulosa cell (GC)-related pathologies. A central role of FOXL2 is the lifetime maintenance of GC identity through the repression of testis-specific genes. Recently, a highly recurrent somatic FOXL2 mutation leading to the p.C134W subtitution has been linked to the development of GC tumours in the adult, which account for up to 5% of ovarian malignancies. In this review, we summarise data on FOXL2 modulators, targets, partners and post-translational modifications. Despite the progresses made thus far, a better understanding of the impact of FOXL2 mutations and of the molecular aspects of its function is required to rationalise its implication in various pathophysiological processes.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Ovário/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Feminino , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Humanos , Folículo Ovariano/fisiologia , Ovário/fisiologia , Processos de Determinação Sexual/fisiologia
11.
Sci Transl Med ; 6(238): 238ra72, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24871133

RESUMO

The T cell compartment is considered to be naïve and dedicated to the development of tolerance during fetal development. We have identified and characterized a population of fetally developed CD4 T cells with an effector memory phenotype (TEM), which are present in cord blood. This population is polyclonal and has phenotypic features similar to those of conventional adult memory T cells, such as CD45RO expression. These cells express low levels of CD25 but are distinct from regulatory T cells because they lack Foxp3 expression. After T cell receptor activation, neonatal TEM cells readily produced tumor necrosis factor-α (TNF-α) and granulocyte-macrophage colony-stimulating factor (GM-CSF). We also detected interferon-γ (IFN-γ)-producing T helper 1 (TH1) cells and interleukin-4 (IL-4)/IL-13-producing TH2-like cells, but not IL-17-producing cells. We used chemokine receptor expression patterns to divide this TEM population into different subsets and identified distinct transcriptional programs using whole-genome microarray analysis. IFN-γ was found in CXCR3(+) TEM cells, whereas IL-4 was found in both CXCR3(+) TEM cells and CCR4(+) TEM cells. CCR6(+) TEM cells displayed a genetic signature that corresponded to TH17 cells but failed to produce IL-17A. However, the TH17 function of TEM cells was observed in the presence of IL-1ß and IL-23. In summary, in the absence of reported pathology or any major infectious history, T cells with a memory-like phenotype develop in an environment thought to be sterile during fetal development and display a large variety of inflammatory effector functions associated with CD4 TH cells at birth.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Feto/imunologia , Memória Imunológica , Humanos , Imunofenotipagem
12.
Biol Direct ; 5: 40, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20565756

RESUMO

BACKGROUND: Co-lethality, or synthetic lethality is the documented genetic situation where two, separately non-lethal mutations, become lethal when combined in one genome. Each mutation is called a "synthetic lethal" (SL) or a co-lethal. Like invariant positions, SL sets (SL linked couples) are choice targets for drug design against fast-escaping RNA viruses: mutational viral escape by loss of affinity to the drug may induce (synthetic) lethality. RESULTS: From an amino acid sequence alignment of the HIV protease, we detected the potential SL couples, potential SL sets, and invariant positions. From the 3D structure of the same protein we focused on the ones that were close to each other and accessible on the protein surface, to possibly bind putative drugs. We aligned 24,155 HIV protease amino acid sequences and identified 290 potential SL couples and 25 invariant positions. After applying the distance and accessibility filter, three candidate drug design targets of respectively 7 (under the flap), 4 (in the cantilever) and 5 (in the fulcrum) amino acid positions were found. CONCLUSIONS: These three replication-critical targets, located outside of the active site, are key to our anti-escape strategy. Indeed, biological evidence shows that 2/3 of those target positions perform essential biological functions. Their mutational variations to escape antiviral medication could be lethal, thus limiting the apparition of drug-resistant strains. REVIEWERS: This article was reviewed by Arcady Mushegian, Shamil Sunyaev and Claus Wilke.


Assuntos
Desenho de Fármacos , Farmacorresistência Viral/genética , Protease de HIV/química , Protease de HIV/genética , Mutação/genética , Mutação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA