Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 120(5): 658-669, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37574851

RESUMO

Evolutionary studies often identify genes that have been exchanged between different organisms and the phrase Lateral or Horizontal Gene Transfer is often used in this context. However, they rarely provide any mechanistic information concerning how these gene transfers might have occurred. With the astonishing increase in the number of sequences in public databases over the past two or three decades, identical antibiotic resistance genes have been identified in many different sequence contexts. One explanation for this would be that genes are initially transmitted by transposons which have subsequently decayed and can no longer be detected. Here, we provide an overview of a protein, IEE (Insertion Sequence Excision Enhancer) observed to facilitate high-frequency excision of IS629 from clinically important Escherichia coli O157:H7 and subsequently shown to affect a large class of bacterial insertion sequences which all transpose using the copy-out-paste-in transposition mechanism. Excision depends on both IEE and transposase indicating association with the transposition process itself. We review genetic and biochemical data and propose that IEE immobilizes genes carried by compound transposons by removing the flanking insertion sequence (IS) copies. The biochemical activities of IEE as a primase with the capacity to recognize DNA microhomologies and the observation that its effect appears restricted to IS families which use copy-out-paste-in transposition, suggests IS deletion occurs by abortive transposition involving strand switching (primer invasion) during the copy-out step. This reinforces the proposal made for understanding the widespread phenomenon loss of ISApl1 flanking mcr-1 in the compound transposon Tn6330 which we illustrate with a detailed model. This model also provides a convincing way to explain the high levels of IEE-induced precise IS excision.


Assuntos
Antibacterianos , Elementos de DNA Transponíveis , Humanos , Elementos de DNA Transponíveis/genética , Antibacterianos/farmacologia , Sequências Reguladoras de Ácido Nucleico , Bactérias/genética , Resistência Microbiana a Medicamentos , DNA Polimerase Dirigida por DNA/genética , DNA Primase/genética , Enzimas Multifuncionais/genética
2.
Mol Phylogenet Evol ; 181: 107711, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36693533

RESUMO

Utricularia and Genlisea are highly specialized carnivorous plants whose phylogenetic history has been poorly explored using phylogenomic methods. Additional sampling and genomic data are needed to advance our phylogenetic and taxonomic knowledge of this group of plants. Within a comparative framework, we present a characterization of plastome (PT) and mitochondrial (MT) genes of 26 Utricularia and six Genlisea species, with representatives of all subgenera and growth habits. All PT genomes maintain similar gene content, showing minor variation across the genes located between the PT junctions. One exception is a major variation related to different patterns in the presence and absence of ndh genes in the small single copy region, which appears to follow the phylogenetic history of the species rather than their lifestyle. All MT genomes exhibit similar gene content, with most differences related to a lineage-specific pseudogenes. We find evidence for episodic positive diversifying selection in PT and for most of the Utricularia MT genes that may be related to the current hypothesis that bladderworts' nuclear DNA is under constant ROS oxidative DNA damage and unusual DNA repair mechanisms, or even low fidelity polymerase that bypass lesions which could also be affecting the organellar genomes. Finally, both PT and MT phylogenetic trees were well resolved and highly supported, providing a congruent phylogenomic hypothesis for Utricularia and Genlisea clade given the study sampling.


Assuntos
Lamiales , Magnoliopsida , Filogenia , Magnoliopsida/genética , Evolução Biológica
3.
Genomics ; 113(4): 2513-2525, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34089784

RESUMO

Xanthomonas arboricola pv. juglandis (Xaj) is the most significant aboveground walnut bacterial pathogen. Disease management uses copper-based pesticides which induce pathogen resistance. We examined the genetic repertoire associated with adaptation and virulence evolution in Xaj. Comparative genomics of 32 Xaj strains reveal the possible acquisition and propagation of virulence factors via insertion sequences (IS). Fine-scale annotation revealed a Tn3 transposon (TnXaj417) encoding copper resistance genes acquired by horizontal gene transfer and associated with adaptation and tolerance to metal-based pesticides commonly used to manage pathogens in orchard ecosystems. Phylogenomic analysis reveals IS involvement in acquisition and diversification of type III effector proteins ranging from two to eight in non-pathogenic strains, 16 to 20 in pathogenic strains, besides six other putative effectors with a reduced identity degree found mostly among pathogenic strains. Yersiniabactin, xopK, xopAI, and antibiotic resistance genes are also located near ISs or inside genomic islands and structures resembling composite transposons.


Assuntos
Ecossistema , Genômica , Elementos de DNA Transponíveis , Filogenia , Virulência/genética , Xanthomonas
4.
Arch Microbiol ; 204(1): 4, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34870720

RESUMO

Sphaerospermopsis aphanizomenoides is a filamentous nitrogen-fixing and bloom-forming cyanobacterium, which biomass can fertilize natural water with nutrients, especially through nitrogen fixation. The Sphaerospermopsis aphanizomenoides strain BCCUSP55 was previously isolated from a water supply reservoir in the Brazilian semiarid region, and its draft genome assembly coupled with the gene contents are reported here. The obtained BCCUSP55 draft genome comprised 254 scaffolds with a genome size estimated of 6,096,273 bp. In addition, it has 5250 predicted coding sequences (CDS) and the G + C content is 38.5%. Further, the BCCUSP55 draft genome presented the putative nocuolin A gene complete cluster, a natural oxadiazine that triggers apoptosis in human cancer cells. Thus, our results contribute to extend the knowledge on the genus Sphaerospermopsis and reveal its biotechnological potential.


Assuntos
Cianobactérias , Composição de Bases , Cianobactérias/genética , Humanos , Família Multigênica , Fixação de Nitrogênio
5.
Artigo em Inglês | MEDLINE | ID: mdl-34032563

RESUMO

The cyanobacterial genus Nostoc is an important contributor to carbon and nitrogen bioavailability in terrestrial ecosystems and a frequent partner in symbiotic relationships with non-diazotrophic organisms. However, since this currently is a polyphyletic genus, the diversity of Nostoc-like cyanobacteria is considerably underestimated at this moment. While reviewing the phylogenetic placement of previously isolated Nostoc-like cyanobacteria originating from Brazilian Amazon, Caatinga and Atlantic forest samples, we detected 17 strains isolated from soil, freshwater, rock and tree surfaces presenting patterns that diverged significantly from related strains when ecological, morphological, molecular and genomic traits were also considered. These observations led to the identification of the evaluated strains as representative of three novel nostocacean genera and species: Amazonocrinis nigriterrae gen. nov., sp. nov.; Atlanticothrix silvestris gen. nov., sp. nov.; and Dendronalium phyllosphericum gen. nov., sp. nov., which are herein described according to the rules of the International Code of Nomenclature for algae, fungi and plants. This finding highlights the great importance of tropical and equatorial South American ecosystems for harbouring an unknown microbial diversity in the face of the anthropogenic threats with which they increasingly struggle.


Assuntos
Cianobactérias/isolamento & purificação , Ecossistema , Microbiologia Ambiental , Composição de Bases , Sequência de Bases , Brasil , Cianobactérias/citologia , Cianobactérias/genética , DNA Bacteriano/genética , DNA Intergênico/genética , Genoma Bacteriano , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Curr Microbiol ; 77(10): 3114-3124, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32719889

RESUMO

This paper outlines two cellulolytic bacterial consortia named SCS and SCB, isolated from soil samples of sugarcane (Saccharum officinarum) crop field, and a sugarcane bagasse deposit in an ethanol mill. Both consortia were able to grow on different carbon sources, such as sugarcane bagasse, corn husk, peanut hulls, and carboxymethylcellulose, releasing up to 11.90 µmol/mL and 15.23 µmol/mL of glucose for SCS and SCB, respectively. In addition, SCS and SCB have several strains capable of producing cellulase, amylase, lipase, and protease. Whole genome sequencing of the SCS consortium revealed that Burkholderia was the most prevalent genus, encompassing approximately 80% of the consortia. In addition, metagenome analysis allowed the identification of genes encoding enzymes related to starch and cellulose degradation, as well as enzymes related to lipases and proteases, confirming our initial findings. The results showed that SCS and SCB had the capability to degrade cellulose, and that they were an efficient source of enzyme production, which would provide a new choice for use in different biotechnological applications.


Assuntos
Celulase , Saccharum , Bactérias/genética , Biomassa , Celulase/genética , Hidrólise , Metagenoma
7.
BMC Genomics ; 20(1): 700, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31500575

RESUMO

BACKGROUND: Xanthomonas citri subsp. citri pathotypes cause bacterial citrus canker, being responsible for severe agricultural losses worldwide. The A pathotype has a broad host spectrum, while A* and Aw are more restricted both in hosts and in geography. Two previous phylogenomic studies led to contrasting well-supported clades for sequenced genomes of these pathotypes. No extensive biogeographical or divergence dating analytic approaches have been so far applied to available genomes. RESULTS: Based on a larger sampling of genomes than in previous studies (including six new genomes sequenced by our group, adding to a total of 95 genomes), phylogenomic analyses resulted in different resolutions, though overall indicating that A + AW is the most likely true clade. Our results suggest the high degree of recombination at some branches and the fast diversification of lineages are probable causes for this phylogenetic blurring effect. One of the genomes analyzed, X. campestris pv. durantae, was shown to be an A* strain; this strain has been reported to infect a plant of the family Verbenaceae, though there are no reports of any X. citri subsp. citri pathotypes infecting any plant outside the Citrus genus. Host reconstruction indicated the pathotype ancestor likely had plant hosts in the family Fabaceae, implying an ancient jump to the current Rutaceae hosts. Extensive dating analyses indicated that the origin of X. citri subsp. citri occurred more recently than the main phylogenetic splits of Citrus plants, suggesting dispersion rather than host-directed vicariance as the main driver of geographic expansion. An analysis of 120 pathogenic-related genes revealed pathotype-associated patterns of presence/absence. CONCLUSIONS: Our results provide novel insights into the evolutionary history of X. citri subsp. citri as well as a sound phylogenetic foundation for future evolutionary and genomic studies of its pathotypes.


Assuntos
Evolução Molecular , Variação Genética , Genômica , Filogeografia , Xanthomonas/genética , Xanthomonas/fisiologia
8.
Mol Ecol ; 28(18): 4259-4271, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31446647

RESUMO

The size of bacterial genomes is often associated with organismal metabolic capabilities determining ecological breadth and lifestyle. The recently proposed Candidate Phyla Radiation (CPR)/Patescibacteria encompasses mostly unculturable bacterial taxa with relatively small genome sizes with potential for co-metabolism interdependencies. As yet, little is known about the ecology and evolution of CPR, particularly with respect to how they might interact with other taxa. Here, we reconstructed two novel genomes (namely, Candidatus Saccharibacter sossegus and Candidatus Chaer renensis) of taxa belonging to the class Saccharimonadia within the CPR/Patescibacteria using metagenomes obtained from acid mine drainage (AMD). By testing the hypothesis of genome streamlining or symbiotic lifestyle, our results revealed clear signatures of gene losses in these genomes, such as those associated with de novo biosynthesis of essential amino acids, nucleotides, fatty acids and cofactors. In addition, co-occurrence analysis provided evidence supporting potential symbioses of these organisms with Hydrotalea sp. in the AMD system. Together, our findings provide a better understanding of the ecology and evolution of CPR/Patescibacteria and highlight the importance of genome reconstruction for studying metabolic interdependencies between unculturable Saccharimonadia representatives.


Assuntos
Bactérias/genética , Genoma Bacteriano , Genômica , Filogenia , Simbiose/genética , Sequência de Bases , Redes Reguladoras de Genes , Redes e Vias Metabólicas/genética , Metagenoma , Microbiota/genética , Mineração , RNA Ribossômico 16S/genética
9.
Mol Biol Rep ; 46(6): 6117-6133, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31549373

RESUMO

A significant proportion of plant genomes is consists of transposable elements (TEs), especially LTR retrotransposons (LTR-RTs) which are known to drive genome evolution. However, not much information is available on the structure and evolutionary role of TEs in the Passifloraceae family (Malpighiales order). Against this backdrop, we identified, characterized, and inferred the potential genomic impact of the TE repertoire found in the available genomic resources for Passiflora edulis, a tropical fruit species. A total of 250 different TE sequences were identified (96% Class I, and 4% Class II), corresponding to ~ 19% of the P. edulis draft genome. TEs were found preferentially in intergenic spaces (70.4%), but also overlapping genes (30.6%). LTR-RTs accounted for 181 single elements corresponding to ~ 13% of the draft genome. A phylogenetic inference of the reverse transcriptase domain of the LTR-RT revealed association of 37 elements with the Copia superfamily (Angela, Ale, Tork, and Sire) and 128 with the Gypsy (Del, Athila, Reina, CRM, and Galadriel) superfamily, and Del elements were the most frequent. Interestingly, according to insertion time analysis, the majority (95.9%) of the LTR-RTs were recently inserted into the P. edulis genome (< 2.0 Mya), and with the exception of the Athila lineage, all LTR-RTs are transcriptionally active. Moreover, functional analyses disclosed that the Angela, Del, CRM and Tork lineages are conserved in wild Passiflora species, supporting the idea of a common expansion of Copia and Gypsy superfamilies. Overall, this is the first study describing the P. edulis TE repertoire, and it also lends weight to the suggestion that LTR-RTs had a recent expansion into the analyzed gene-rich region of the P. edulis genome, possibly along WGD (Whole genome duplication) events, but are under negative selection due to their potential deleterious impact on gene regions.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Frutas/genética , Passiflora/genética , Retroelementos , Sequências Repetidas Terminais , Mutagênese Insercional , Passiflora/classificação , Filogenia , Transcrição Gênica
10.
Int J Mol Sci ; 21(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861318

RESUMO

Utricularia belongs to Lentibulariaceae, a widespread family of carnivorous plants that possess ultra-small and highly dynamic nuclear genomes. It has been shown that the Lentibulariaceae genomes have been shaped by transposable elements expansion and loss, and multiple rounds of whole-genome duplications (WGD), making the family a platform for evolutionary and comparative genomics studies. To explore the evolution of Utricularia, we estimated the chromosome number and genome size, as well as sequenced the terrestrial bladderwort Utricularia reniformis (2n = 40, 1C = 317.1-Mpb). Here, we report a high quality 304 Mb draft genome, with a scaffold NG50 of 466-Kb, a BUSCO completeness of 87.8%, and 42,582 predicted genes. Compared to the smaller and aquatic U. gibba genome (101 Mb) that has a 32% repetitive sequence, the U. reniformis genome is highly repetitive (56%). The structural differences between the two genomes are the result of distinct fractionation and rearrangements after WGD, and massive proliferation of LTR-retrotransposons. Moreover, GO enrichment analyses suggest an ongoing gene birth-death-innovation process occurring among the tandem duplicated genes, shaping the evolution of carnivory-associated functions. We also identified unique patterns of developmentally related genes that support the terrestrial life-form and body plan of U. reniformis. Collectively, our results provided additional insights into the evolution of the plastic and specialized Lentibulariaceae genomes.


Assuntos
Meio Ambiente , Evolução Molecular , Interação Gene-Ambiente , Genoma de Planta , Genômica , Lamiales/genética , Adaptação Biológica , Carnivoridade , Mapeamento Cromossômico , Biologia Computacional/métodos , Duplicação Gênica , Genômica/métodos , Cariotipagem , Anotação de Sequência Molecular , Filogenia , Retroelementos , Sequências de Repetição em Tandem
11.
Int J Mol Sci ; 20(24)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817365

RESUMO

Utricularia amethystina Salzm. ex A.St.-Hil. & Girard (Lentibulariaceae) is a highly polymorphic carnivorous plant taxonomically rearranged many times throughout history. Herein, the complete chloroplast genomes (cpDNA) of three U. amethystina morphotypes: purple-, white-, and yellow-flowered, were sequenced, compared, and putative markers for systematic, populations, and evolutionary studies were uncovered. In addition, RNA-Seq and RNA-editing analysis were employed for functional cpDNA evaluation. The cpDNA of three U. amethystina morphotypes exhibits typical quadripartite structure. Fine-grained sequence comparison revealed a high degree of intraspecific genetic variability in all morphotypes, including an exclusive inversion in the psbM and petN genes in U. amethystina yellow. Phylogenetic analyses indicate that U. amethystina morphotypes are monophyletic. Furthermore, in contrast to the terrestrial Utricularia reniformis cpDNA, the U. amethystina morphotypes retain all the plastid NAD(P)H-dehydrogenase (ndh) complex genes. This observation supports the hypothesis that the ndhs in terrestrial Utricularia were independently lost and regained, also suggesting that different habitats (aquatic and terrestrial) are not related to the absence of Utricularia ndhs gene repertoire as previously assumed. Moreover, RNA-Seq analyses recovered similar patterns, including nonsynonymous RNA-editing sites (e.g., rps14 and petB). Collectively, our results bring new insights into the chloroplast genome architecture and evolution of the photosynthesis machinery in the Lentibulariaceae.


Assuntos
DNA de Cloroplastos/genética , Evolução Molecular , Genoma de Cloroplastos , Lamiales/genética , Fotossíntese/genética , Edição de RNA
12.
Mol Biol Rep ; 45(1): 57-61, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29275442

RESUMO

Genlisea aurea A.St.-Hil. is a carnivorous plant endemic species to Brazil in the Lentibulariaceae family. Very few studies have addressed the genetic structure and conservation status of G. aurea and the Lentibulariaceae. Microsatellites markers are advantageous tools that can be employed to predict the vulnerability of Lentibulariaceae species. Therefore, the development of molecular markers focusing the population analyses of Genlisea for future genetic studies and conservation actions are essential. Thus, we developed simple sequence repeats (SSRs) based on in silico analyses of G. aurea draft genome assembly. We characterized 40 individuals from several populations and identified 12 loci that were polymorphic, with heterozygosity between 0.123 and 0.650. We demonstrated that the G. aurea SSR markers work cross-species in Genlisea filiformis, G. repens, G. tuberosa and G. violacea. These markers will be important for future population, phylogeographic and conservation studies in G. aurea and other Genlisea species.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Magnoliopsida/genética , Repetições de Microssatélites/genética , Brasil , Carnivoridade , Simulação por Computador , Genética Populacional/métodos , Genoma de Planta/genética , Genômica , Magnoliopsida/metabolismo , Filogenia , Análise de Sequência de DNA/métodos
13.
Genet Mol Biol ; 41(2): 507-513, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29767666

RESUMO

Cellulose and its associated polymers are structural components of the plant cell wall, constituting one of the major sources of carbon and energy in nature. The carbon cycle is dependent on cellulose- and lignin-decomposing microbial communities and their enzymatic systems acting as consortia. These microbial consortia are under constant exploration for their potential biotechnological use. Herein, we describe the characterization of the genome of Dyella jiangningensis FCAV SCS01, recovered from the metagenome of a lignocellulose-degrading microbial consortium, which was isolated from a sugarcane crop soil under mechanical harvesting and covered by decomposing straw. The 4.7 Mbp genome encodes 4,194 proteins, including 36 glycoside hydrolases (GH), supporting the hypothesis that this bacterium may contribute to lignocellulose decomposition. Comparative analysis among fully sequenced Dyella species indicate that the genome synteny is not conserved, and that D. jiangningensis FCAV SCS01 carries 372 unique genes, including an alpha-glucosidase and maltodextrin glucosidase coding genes, and other potential biomass degradation related genes. Additional genomic features, such as prophage-like, genomic islands and putative new biosynthetic clusters were also uncovered. Overall, D. jiangningensis FCAV SCS01 represents the first South American Dyella genome sequenced and shows an exclusive feature among its genus, related to biomass degradation.

14.
Antimicrob Agents Chemother ; 60(5): 3211-4, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26953192

RESUMO

The aim of this study was to characterize the genetic context of blaKPC-2 in Pseudomonas aeruginosa sequence type 244 from Brazil. The blaKPC-2 gene was detected in a new small plasmid, pBH6. Complete sequencing revealed that pBH6 was 3,652 bp long and included the Tn3 resolvase and Tn3 inverted repeat (IR), a partial copy of ISKpn6, and a putative ori region but no rep genes. pBH6 replicated stably into Escherichia coli strain DH10B and P. aeruginosa strain PAO.


Assuntos
Proteínas de Bactérias/genética , Plasmídeos/genética , Pseudomonas aeruginosa/genética , Brasil , DNA Bacteriano/genética
15.
BMC Genomics ; 15: 540, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24984568

RESUMO

BACKGROUND: Sugarcane is the source of sugar in all tropical and subtropical countries and is becoming increasingly important for bio-based fuels. However, its large (10 Gb), polyploid, complex genome has hindered genome based breeding efforts. Here we release the largest and most diverse set of sugarcane genome sequences to date, as part of an on-going initiative to provide a sugarcane genomic information resource, with the ultimate goal of producing a gold standard genome. RESULTS: Three hundred and seventeen chiefly euchromatic BACs were sequenced. A reference set of one thousand four hundred manually-annotated protein-coding genes was generated. A small RNA collection and a RNA-seq library were used to explore expression patterns and the sRNA landscape. In the sucrose and starch metabolism pathway, 16 non-redundant enzyme-encoding genes were identified. One of the sucrose pathway genes, sucrose-6-phosphate phosphohydrolase, is duplicated in sugarcane and sorghum, but not in rice and maize. A diversity analysis of the s6pp duplication region revealed haplotype-structured sequence composition. Examination of hom(e)ologous loci indicate both sequence structural and sRNA landscape variation. A synteny analysis shows that the sugarcane genome has expanded relative to the sorghum genome, largely due to the presence of transposable elements and uncharacterized intergenic and intronic sequences. CONCLUSION: This release of sugarcane genomic sequences will advance our understanding of sugarcane genetics and contribute to the development of molecular tools for breeding purposes and gene discovery.


Assuntos
Genoma de Planta , Saccharum/genética , Sequência de Bases , Evolução Biológica , Biotecnologia , Cromossomos Artificiais Bacterianos , Duplicação Gênica , Biblioteca Gênica , Haplótipos , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/genética , Proteínas de Plantas/genética , Poliploidia , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA , Sorghum/genética
16.
Methods Mol Biol ; 2802: 189-213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38819561

RESUMO

The data generated in nearly 30 years of bacterial genome sequencing has revealed the abundance of transposable elements (TE) and their importance in genome and transcript remodeling through the mediation of DNA insertions and deletions, structural rearrangements, and regulation of gene expression. Furthermore, what we have learned from studying transposition mechanisms and their regulation in bacterial TE is fundamental to our current understanding of TE in other organisms because much of what has been observed in bacteria is conserved in all domains of life. However, unlike eukaryotic TE, prokaryotic TE sequester and transmit important classes of genes that impact host fitness, such as resistance to antibiotics and heavy metals and virulence factors affecting animals and plants, among other acquired traits. This provides dynamism and plasticity to bacteria, which would otherwise be propagated clonally. The insertion sequences (IS), the simplest form of prokaryotic TE, are autonomous and compact mobile genetic elements. These can be organized into compound transposons, in which two similar IS can flank any DNA segment and render it transposable. Other more complex structures, called unit transposons, can be grouped into four major families (Tn3, Tn7, Tn402, Tn554) with specific genetic characteristics. This chapter will revisit the prominent structural features of these elements, focusing on a genomic annotation framework and comparative analysis. Relevant aspects of TE will also be presented, stressing their key position in genome impact and evolution, especially in the emergence of antimicrobial resistance and other adaptive traits.


Assuntos
Elementos de DNA Transponíveis , Genoma Bacteriano , Genômica , Anotação de Sequência Molecular , Elementos de DNA Transponíveis/genética , Genômica/métodos , Bactérias/genética , Evolução Molecular , Células Procarióticas/metabolismo
17.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38837946

RESUMO

BACKGROUND: Theobroma grandiflorum (Malvaceae), known as cupuassu, is a tree indigenous to the Amazon basin, valued for its large fruits and seed pulp, contributing notably to the Amazonian bioeconomy. The seed pulp is utilized in desserts and beverages, and its seed butter is used in cosmetics. Here, we present the sequenced telomere-to-telomere genome of cupuassu, disclosing its genomic structure, evolutionary features, and phylogenetic relationships within the Malvaceae family. FINDINGS: The cupuassu genome spans 423 Mb, encodes 31,381 genes distributed in 10 chromosomes, and exhibits approximately 65% gene synteny with the Theobroma cacao genome, reflecting a conserved evolutionary history, albeit punctuated with unique genomic variations. The main changes are pronounced by bursts of long-terminal repeat retrotransposons at postspecies divergence, retrocopied and singleton genes, and gene families displaying distinctive patterns of expansion and contraction. Furthermore, positively selected genes are evident, particularly among retained and dispersed tandem and proximal duplicated genes associated with general fruit and seed traits and defense mechanisms, supporting the hypothesis of potential episodes of subfunctionalization and neofunctionalization following duplication, as well as impact from distinct domestication process. These genomic variations may underpin the differences observed in fruit and seed morphology, ripening, and disease resistance between cupuassu and the other Malvaceae species. CONCLUSIONS: The cupuassu genome offers a foundational resource for both breeding improvement and conservation biology, yielding insights into the evolution and diversity within the genus Theobroma.


Assuntos
Evolução Molecular , Genoma de Planta , Filogenia , Cromossomos de Plantas , Genômica/métodos , Malvaceae/genética
18.
Gene ; 849: 146904, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36150535

RESUMO

Unlike the chloroplast genomes (ptDNA), the plant mitochondrial genomes (mtDNA) are much more plastic in structure and size but maintain a conserved and essential gene set related to oxidative phosphorylation. Moreover, the plant mitochondrial genes and mtDNA are good markers for phylogenetic, evolutive, and comparative analyses. The two most known species in Theobroma L. (Malvaceae s.l.) genus are T. cacao, and T. grandiflorum. Besides the economic value, both species also show considerable biotechnology potential due to their other derived products, thus, aggregating additional economic value for the agroindustry. Here, we assembled and compared the mtDNA of Theobroma cacao and T. grandiflorum to generate a new genomics resource and unravel evolutionary trends. Graph-based analyses revealed that both mtDNA exhibit multiple alternative arrangements, confirming the dynamism commonly observed in plant mtDNA. The disentangled assembly graph revealed potential predominant circular molecules. The master circle molecules span 543,794 bp for T. cacao and 501,598 bp for T. grandiflorum, showing 98.9% of average sequence identity. Both mtDNA contains the same set of 39 plant mitochondrial genes, commonly found in other rosid mitogenomes. The main features are a duplicated copy of atp4, the absence of rpl6, rps2, rps8, and rps11, and the presence of two chimeric open-reading frames. Moreover, we detected few ptDNA integrations mainly represented by tRNAs, and no viral sequences were detected. Phylogenomics analyses indicate Theobroma spp. are nested in Malvaceae family. The main mtDNA differences are related to distinct structural rearrangements and exclusive regions associated with relics of Transposable Elements, supporting the hypothesis of dynamic mitochondrial genome maintenance and divergent evolutionary paths and pressures after species differentiation.


Assuntos
Cacau , Genoma Mitocondrial , Cacau/genética , Genoma Mitocondrial/genética , Filogenia , Elementos de DNA Transponíveis , Plásticos , DNA Mitocondrial
19.
Res Microbiol ; 174(8): 104116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37573924

RESUMO

Agaricus subrufescens, also known as the "sun mushroom," has significant nutritional and medicinal value. However, its short shelf life due to the browning process results in post-harvest losses unless it's quickly dehydrated. This restricts its availability to consumers in the form of capsules. A genome sequence of A. subrufescens may lead to new cultivation alternatives or the application of gene editing strategies to delay the browning process. We assembled a chromosome-scale genome using a hybrid approach combining Illumina and Nanopore sequencing. The genome was assembled into 13 chromosomes and 31 unplaced scaffolds, totaling 44.5 Mb with 96.5% completeness and 47.24% GC content. 14,332 protein-coding genes were identified, with 64.6% of the genome covered by genes and 23.41% transposable elements. The mitogenome was circularized and encoded fourteen typical mitochondrial genes. Four polyphenol oxidase (PPO) genes and the Mating-type locus were identified. Phylogenomic analysis supports the placement of A. subrufescens in the Agaricomycetes clade. This is the first available genome sequence of a strain of the "sun mushroom." Results are available through a Genome Browser (https://plantgenomics.ncc.unesp.br/gen.php?id=Asub) and can support further fungal biological and genomic studies.


Assuntos
Agaricus , Agaricus/genética , Genômica , Cromossomos , Biotecnologia , Genoma Fúngico
20.
Int J Food Microbiol ; 405: 110337, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37506547

RESUMO

The present study offers detailed insights into the antifungal and anti-mycotoxigenic potential of a biofilm forming lactic acid bacterium (Pediococcus pentosaceus) against one atoxigenic (Aspergillus flavus) and two toxigenic (Aspergillus nomius and Fusarium verticillioides) fungal strains. The antifungal effect of P. pentosaceus LBM18 strain was initially investigated through comparative analysis of fungi physiology by macroscopic visual evaluations and scanning electron microscopy examinations. The effects over fungal growth rate and asexual sporulation were additionally accessed. Furthermore, analytical evaluations of mycotoxin production were carried out by HPLC-MS/MS to provide insights on the bacterial anti-mycotoxigenic activity over fungal production of the aflatoxins B1, B2, G1 and G2 as well as fumonisins B1 and B2. Finally, reverse transcription quantitative real-time PCR (RT-qPCR) analysis was employed at the most effective bacterial inoculant concentration to evaluate, at the molecular level, the down-regulation of genes aflR, aflQ and aflD, related to the biosynthesis of aflatoxins by the strain of Aspergillus nomius. The effects over mycotoxin contamination were thought to be result of a combination of several biotic and abiotic factors, such as interaction between living beings and physical-chemical aspects of the environment, respectively. Several possible mechanisms of action were addressed along with potentially deleterious effects ascribing from P. pentosaceus misuse as biopesticide, emphasizing the importance of evaluating lactic acid bacteria safety in new applications, concentrations, and exposure scenarios.


Assuntos
Aflatoxinas , Micotoxinas , Antifúngicos/farmacologia , Antifúngicos/análise , Pediococcus pentosaceus , Espectrometria de Massas em Tandem , Silagem/análise , Micotoxinas/análise , Aflatoxinas/análise , Aspergillus flavus , Grão Comestível/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA