Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33971669

RESUMO

A large number of genetic variations have been identified to be associated with Alzheimer's disease (AD) and related quantitative traits. However, majority of existing studies focused on single types of omics data, lacking the power of generating a community including multi-omic markers and their functional connections. Because of this, the immense value of multi-omics data on AD has attracted much attention. Leveraging genomic, transcriptomic and proteomic data, and their backbone network through functional relations, we proposed a modularity-constrained logistic regression model to mine the association between disease status and a group of functionally connected multi-omic features, i.e. single-nucleotide polymorphisms (SNPs), genes and proteins. This new model was applied to the real data collected from the frontal cortex tissue in the Religious Orders Study and Memory and Aging Project cohort. Compared with other state-of-art methods, it provided overall the best prediction performance during cross-validation. This new method helped identify a group of densely connected SNPs, genes and proteins predictive of AD status. These SNPs are mostly expression quantitative trait loci in the frontal region. Brain-wide gene expression profile of these genes and proteins were highly correlated with the brain activation map of 'vision', a brain function partly controlled by frontal cortex. These genes and proteins were also found to be associated with the amyloid deposition, cortical volume and average thickness of frontal regions. Taken together, these results suggested a potential pathway underlying the development of AD from SNPs to gene expression, protein expression and ultimately brain functional and structural changes.


Assuntos
Doença de Alzheimer/genética , Bases de Dados de Ácidos Nucleicos , Genômica , Polimorfismo de Nucleotídeo Único , Transcriptoma , Doença de Alzheimer/metabolismo , Estudo de Associação Genômica Ampla , Humanos
2.
J Alzheimers Dis ; 99(2): 715-727, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728189

RESUMO

Background: There are various molecular hypotheses regarding Alzheimer's disease (AD) like amyloid deposition, tau propagation, neuroinflammation, and synaptic dysfunction. However, detailed molecular mechanism underlying AD remains elusive. In addition, genetic contribution of these molecular hypothesis is not yet established despite the high heritability of AD. Objective: The study aims to enable the discovery of functionally connected multi-omic features through novel integration of multi-omic data and prior functional interactions. Methods: We propose a new deep learning model MoFNet with improved interpretability to investigate the AD molecular mechanism and its upstream genetic contributors. MoFNet integrates multi-omic data with prior functional interactions between SNPs, genes, and proteins, and for the first time models the dynamic information flow from DNA to RNA and proteins. Results: When evaluated using the ROS/MAP cohort, MoFNet outperformed other competing methods in prediction performance. It identified SNPs, genes, and proteins with significantly more prior functional interactions, resulting in three multi-omic subnetworks. SNP-gene pairs identified by MoFNet were mostly eQTLs specific to frontal cortex tissue where gene/protein data was collected. These molecular subnetworks are enriched in innate immune system, clearance of misfolded proteins, and neurotransmitter release respectively. We validated most findings in an independent dataset. One multi-omic subnetwork consists exclusively of core members of SNARE complex, a key mediator of synaptic vesicle fusion and neurotransmitter transportation. Conclusions: Our results suggest that MoFNet is effective in improving classification accuracy and in identifying multi-omic markers for AD with improved interpretability. Multi-omic subnetworks identified by MoFNet provided insights of AD molecular mechanism with improved details.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Polimorfismo de Nucleotídeo Único , Doença de Alzheimer/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Redes Reguladoras de Genes/genética
3.
medRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961458

RESUMO

Alzheimer's disease (AD) is a highly heritable brain dementia, along with substantial failure of cognitive function. Large-scale genome-wide association studies (GWAS) have led to a significant set of SNPs associated with AD and related traits. GWAS hits usually emerge as clusters where a lead SNP with the highest significance is surrounded by other less significant neighboring SNPs. Although functionality is not guaranteed with even the strongest associations in the GWAS, the lead SNPs have been historically the focus of the field, with the remaining associations inferred as redundant. Recent deep genome annotation tools enable the prediction of function from a segment of DNA sequence with significantly improved precision, which allows in-silico mutagenesis to interrogate the functional effect of SNP alleles. In this project, we explored the impact of top AD GWAS hits on the chromatin functions, and whether it will be altered by the genomic context (i.e., alleles of neighborhood SNPs). Our results showed that highly correlated SNPs in the same LD block could have distinct impact on the downstream functions. Although some GWAS lead SNPs showed dominating functional effect regardless of the neighborhood SNP alleles, several other ones do get enhanced loss or gain of function under certain genomic context, suggesting potential extra information hidden in the LD blocks.

4.
Front Big Data ; 6: 1151893, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215688

RESUMO

Introduction: Brain imaging genetics aims to explore the genetic architecture underlying brain structure and functions. Recent studies showed that the incorporation of prior knowledge, such as subject diagnosis information and brain regional correlation, can help identify significantly stronger imaging genetic associations. However, sometimes such information may be incomplete or even unavailable. Methods: In this study, we explore a new data-driven prior knowledge that captures the subject-level similarity by fusing multi-modal similarity networks. It was incorporated into the sparse canonical correlation analysis (SCCA) model, which is aimed to identify a small set of brain imaging and genetic markers that explain the similarity matrix supported by both modalities. It was applied to amyloid and tau imaging data of the ADNI cohort, respectively. Results: Fused similarity matrix across imaging and genetic data was found to improve the association performance better or similarly well as diagnosis information, and therefore would be a potential substitute prior when the diagnosis information is not available (i.e., studies focused on healthy controls). Discussion: Our result confirmed the value of all types of prior knowledge in improving association identification. In addition, the fused network representing the subject relationship supported by multi-modal data showed consistently the best or equally best performance compared to the diagnosis network and the co-expression network.

5.
BMC Med Genomics ; 15(Suppl 2): 93, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461270

RESUMO

BACKGROUND: Large-scale genome-wide association studies have successfully identified many genetic variants significantly associated with Alzheimer's disease (AD), such as rs429358, rs11038106, rs723804, rs13591776, and more. The next key step is to understand the function of these SNPs and the downstream biology through which they exert the effect on the development of AD. However, this remains a challenging task due to the tissue-specific nature of transcriptomic and proteomic data and the limited availability of brain tissue.In this paper, instead of using coupled transcriptomic data, we performed an integrative analysis of existing GWAS findings and expression quantitative trait loci (eQTL) results from AD-related brain regions to estimate the transcriptomic alterations in AD brain. RESULTS: We used summary-based mendelian randomization method along with heterogeneity in dependent instruments method and were able to identify 32 genes with potential altered levels in temporal cortex region. Among these, 10 of them were further validated using real gene expression data collected from temporal cortex region, and 19 SNPs from NECTIN and TOMM40 genes were found associated with multiple temporal cortex imaging phenotype. CONCLUSION: Significant pathways from enriched gene networks included neutrophil degranulation, Cell surface interactions at the vascular wall, and Regulation of TP53 activity which are still relatively under explored in Alzheimer's Disease while also encouraging a necessity to bind further trans-eQTL effects into this integrative analysis.


Assuntos
Doença de Alzheimer , Estudo de Associação Genômica Ampla , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Proteômica , Locos de Características Quantitativas , Transcriptoma
6.
PLoS One ; 15(6): e0234748, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555747

RESUMO

Large-scale genome wide association studies (GWASs) have led to discovery of many genetic risk factors in Alzheimer's disease (AD), such as APOE, TOMM40 and CLU. Despite the significant progress, it remains a major challenge to functionally validate these genetic findings and translate them into targetable mechanisms. Integration of multiple types of molecular data is increasingly used to address this problem. In this paper, we proposed a modularity-constrained Lasso model to jointly analyze the genotype, gene expression and protein expression data for discovery of functionally connected multi-omic biomarkers in AD. With a prior network capturing the functional relationship between SNPs, genes and proteins, the newly introduced penalty term maximizes the global modularity of the subnetwork involving selected markers and encourages the selection of multi-omic markers with dense functional connectivity, instead of individual markers. We applied this new model to the real data collected in the ROS/MAP cohort where the cognitive performance was used as disease quantitative trait. A functionally connected subnetwork involving 276 multi-omic biomarkers, including SNPs, genes and proteins, were identified to bear predictive power. Within this subnetwork, multiple trans-omic paths from SNPs to genes and then proteins were observed. This suggests that cognitive performance deterioration in AD patients can be potentially a result of genetic variations due to their cascade effect on the downstream transcriptome and proteome level.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Biologia Computacional/métodos , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Feminino , Genômica , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA