Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 19(6): 655-662, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32094497

RESUMO

Unlike the wide-ranging dynamic control of electrical conductivity, there does not exist an analogous ability to tune thermal conductivity by means of electric potential. The traditional picture assumes that atoms inserted into a material's lattice act purely as a source of scattering for thermal carriers, which can only reduce thermal conductivity. In contrast, here we show that the electrochemical control of oxygen and proton concentration in an oxide provides a new ability to bi-directionally control thermal conductivity. On electrochemically oxygenating the brownmillerite SrCoO2.5 to the perovskite SrCoO3-δ, the thermal conductivity increases by a factor of 2.5, whereas protonating it to form hydrogenated SrCoO2.5 effectively reduces the thermal conductivity by a factor of four. This bi-directional tuning of thermal conductivity across a nearly 10 ± 4-fold range at room temperature is achieved by using ionic liquid gating to trigger the 'tri-state' phase transitions in a single device. We elucidated the effects of these anionic and cationic species, and the resultant changes in lattice constants and lattice symmetry on thermal conductivity by combining chemical and structural information from X-ray absorption spectroscopy with thermoreflectance thermal conductivity measurements and ab initio calculations. This ability to control multiple ion types, multiple phase transitions and electronic conductivity that spans metallic through to insulating behaviour in oxides by electrical means provides a new framework for tuning thermal transport over a wide range.

2.
ACS Appl Mater Interfaces ; 6(20): 18033-9, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25248147

RESUMO

The electrochemistry of Mg salts in room-temperature ionic liquids (ILs) was studied using plating/stripping voltammetry to assess the viability of IL solvents for applications in secondary Mg batteries. Borohydride (BH4(-)), trifluoromethanesulfonate (TfO(-)), and bis(trifluoromethanesulfonyl)imide (Tf2N(-)) salts of Mg were investigated. Three ILs were considered: l-n-butyl-3-methylimidazolium (BMIM)-Tf2N, N-methyl-N-propylpiperidinium (PP13)-Tf2N, and N,N-diethyl-N-methyl(2-methoxyethyl)ammonium (DEME(+)) tetrafluoroborate (BF4(-)). Salts and ILs were combined to produce binary solutions in which the anions were structurally similar or identical, if possible. Contrary to some prior reports, no salt/IL combination appeared to facilitate reversible Mg plating. In solutions containing BMIM(+), oxidative activity near 0.8 V vs Mg/Mg(2+) is likely associated with the BMIM cation, rather than Mg stripping. The absence of voltammetric signatures of Mg plating from ILs with Tf2N(-) and BF4(-) suggests that strong Mg/anion Coulombic attraction inhibits electrodeposition. Cosolvent additions to Mg(Tf2N)2/PP13-Tf2N were explored but did not result in enhanced plating/stripping activity. The results highlight the need for IL solvents or cosolvent systems that promote Mg(2+) dissociation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA