Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioessays ; 44(1): e2100189, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34812505

RESUMO

The COVID-19 pandemic is responsible for millions of deaths worldwide yet its origin remains unclear. Two potential scenarios of how infection of humans initially occurred include zoonotic transfer from wild animals and a leak of the pathogen from a research laboratory. The Wuhan wet markets where wild animals are sold represent a strong scenario for zoonotic transfer. However, isolation of SARS-CoV-2 or its immediate predecessor from wild animals in their natural environment has yet to be documented. Due to incomplete evidence for a zoonotic origin, a laboratory origin is plausible. The Wuhan Institute of Virology is at the epicenter of the pandemic and their work has included manipulation of wild-type coronavirus to enable infection of human cells. Although stronger evidence supports the zoonotic transfer, inconclusive reports maintain the laboratory leak hypothesis alive. It is imperative to reach a factual conclusion to prevent future pandemics.


Assuntos
COVID-19 , Pandemias , Animais , Humanos , Laboratórios , SARS-CoV-2
2.
Eur J Appl Physiol ; 123(12): 2771-2778, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37368137

RESUMO

PURPOSE: Smaller lipid droplet morphology and GLUT 4 protein expression have been associated with greater muscle oxidative capacity and glucose uptake, respectively. The main purpose of this study was to determine the effect of an acute long-duration exercise bout on skeletal muscle lipid droplet morphology, GLUT4, perilipin 3, and perilipin 5 expressions. METHODS: Twenty healthy men (age 24.0 ± 1.0 years, BMI 23.6 ± 0.4 kg/m2) were recruited for the study. The participants were subjected to an acute bout of exercise on a cycle ergometer at 50% VO2max until they reached a total energy expenditure of 650 kcal. The study was conducted after an overnight fast. Vastus lateralis muscle biopsies were obtained before and immediately after exercise for immunohistochemical analysis to determine lipid, perilipin 3, perilipin 5, and GLUT4 protein contents while GLUT 4 mRNA was quantified using RT-qPCR. RESULTS: Lipid droplet size decreased whereas total intramyocellular lipid content tended to reduce (p = 0.07) after an acute bout of endurance exercise. The density of smaller lipid droplets in the peripheral sarcoplasmic region significantly increased (0.584 ± 0.04 to 0.638 ± 0.08 AU; p = 0.01) while larger lipid droplets significantly decreased (p < 0.05). GLUT4 mRNA tended to increase (p = 0.05). There were no significant changes in GLUT 4, perilipin 3, and perilipin 5 protein levels. CONCLUSION: The study demonstrates that exercise may impact metabolism by enhancing the quantity of smaller lipid droplets over larger lipid droplets.


Assuntos
Gotículas Lipídicas , Perilipina-5 , Masculino , Humanos , Adulto Jovem , Adulto , Perilipina-1/metabolismo , Gotículas Lipídicas/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Perilipina-5/metabolismo , Perilipina-3/metabolismo , Músculo Esquelético/fisiologia , Lipídeos , RNA Mensageiro/metabolismo , Metabolismo dos Lipídeos/fisiologia
3.
Invest New Drugs ; 40(5): 905-921, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35793039

RESUMO

Cancer remains the second most common cause of death in the US. Due to a recurrent problem with anticancer drug resistance, there is a current need for anticancer drugs with distinct modes of action for combination drug therapy We have tested two novel piperidone compounds, named 2608 (1-dichloroacetyl - 3,5-bis(3,4-difluorobenzylidene)-4-piperidone) and 2610 (1-dichloroacetyl-3,5-bis(3,4-dichlorobenzylidene)-4-piperidone), for their potential cytotoxicity on numerous human cancer cell lines. We found that both compounds were cytotoxic for breast, pancreatic, leukemia, lymphoma, colon, and fibroblast cell lines, with a cytotoxic concentration 50% (CC50) in the low micromolar to nanomolar concentration range. Further assays focused primarily on an acute lymphoblastic lymphoma and colon cancer cell lines since they were the most sensitive and resistant to the experimental piperidones. The cell death mechanism was evaluated through assays commonly used to detect the induction of apoptosis. These assays revealed that both 2608 and 2610 induced reactive oxygen species (ROS) accumulation, mitochondrial depolarization, and activated caspase-3/7. Our findings suggest that the piperidones induced cell death via the intrinsic apoptotic pathway. Additional assays revealed that both piperidones cause cell cycle alteration in lymphoma and colon cell lines. Both piperidones elicited DNA fragmentation, as evidenced by an increment in the sub-G0/G1 subpopulation in both cell lines. Similar to other related compounds, both piperidones were found to act as proteasome inhibitors by increasing the levels of poly-ubiquitinated proteins in both lymphoma and colon cell lines. Hence, the two piperidones exhibited attractive cytotoxic properties and suitable mechanisms of action, which makes them good candidates as anticancer drugs.


Assuntos
Antineoplásicos , Linfoma , Piperidonas , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Humanos , Masculino , Piperidonas/farmacologia , Próstata
4.
Invest New Drugs ; 39(2): 400-415, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33063290

RESUMO

Lactoferrin has gained extensive attention due to its ample biological properties. In this study, recombinant human lactoferrin carrying humanized glycosylation (rhLf-h-glycan) expressed in the yeast Pichia pastoris SuperMan5, which is genetically glycoengineered to efficiently produce functional humanized glycoproteins inclosing (Man)5(GlcNAc)2 Asn-linked glycans, was analyzed, inspecting its potential toxicity against cancer cells. The live-cell differential nuclear staining assay was used to quantify the rhLf-h-glycan cytotoxicity, which was examined in four human cell lines: acute lymphoblastic leukemia (ALL) CCRF-CEM, T-cell lymphoblastic lymphoma SUP-T1, cervical adenocarcinoma HeLa, and as control, non-cancerous Hs27 cells. The defined CC50 values of rhLf-h-glycan in CCRF-CEM, SUP-T1, HeLa, and Hs27 cells were 144.45 ± 4.44, 548.47 ± 64.41, 350 ± 14.82, and 3359.07 ± 164 µg/mL, respectively. The rhLf-h-glycan exhibited a favorable selective cytotoxicity index (SCI), preferentially killing cancer cells: 23.25 for CCRF-CEM, 9.59 for HeLa, and 6.12 for SUP-T1, as compared with Hs27 cells. Also, rhLf-h-glycan showed significant antiproliferative activity (P < 0.0001) at 24, 48, and 72 h of incubation on CCRF-CEM cells. Additionally, it was observed via fluorescent staining and confocal microscopy that rhLf-h-glycan elicited apoptosis-associated morphological changes, such as blebbing, nuclear fragmentation, chromatin condensation, and apoptotic bodies in ALL cells. Furthermore, rhLf-h-glycan-treated HeLa cells revealed shrinkage of the microfilament structures, generating a speckled/punctuated pattern and also caused PARP-1 cleavage, a hallmark of apoptosis. Moreover, in ALL cells, rhLf-h-glycan altered cell cycle progression inducing the G2/M phase arrest, and caused apoptotic DNA fragmentation. Overall, our findings revealed that rhLf-h-glycan has potential as an anticancer agent and therefore deserves further in vivo evaluation.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Lactoferrina/farmacologia , Linhagem Celular Tumoral , Células HeLa , Humanos , Proteínas Recombinantes , Saccharomycetales
5.
Bioorg Chem ; 100: 103935, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32454391

RESUMO

Since cancer cells have different mitochondrial bioenergetic requirements than non-cancerous cells, therapeutic inhibition of its mitochondrial functionality continues to be an important target for anticancer drug discovery. In this study, a series of acylhydroquinones with different acyl-chain length, and their chlorinated derivatives, in the aromatic ring, synthesized by Fries rearrangement under microwave irradiation, were evaluated for their anticancer activity in two leukemia cell lines. Findings from the primary and secondary screening of the 18 acylhydroquinones, tested at 5 µM on acute promyelocytic leukemia HL-60 and acute lymphoblastic leukemia CEM cells lines, identified an acylchlorohydroquinone (12) with a highly selective anti-proliferative effect toward HL-60 cells. This compound induced S-phase arrest in the cell cycle progression of HL-60 cells with insignificant toxicity on leukemic CEM cells and non-cancerous Hs27 cells. In HL-60 leukemic cells, 12 triggered increased mitochondrial NADH oxidation, increased respiration in presence of oligomycin (state 4o), mitochondrial depolarization, and ROS production, suggesting an uncoupling of OXPHOS. This provoked a metabolic adaptation dependent on AMPK/ACC/autophagy axis, having the mitochondrial ß-oxidation a pro-survival role since the combination of 12 and etomoxir, a carnitine palmitoyl-transferase (CPT) inhibitor promoted extensive HL-60 cell death. Finally, 12-induced metabolic stress sensitized to HL-60 cells to cell death by the FDA-approved anti-leukemic drug ABT-199, a BH3 mimetic. Therefore, our results suggest that acylchlorohydroquinone is a promising scaffold in anti-promyelocytic leukemia drug research.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Hidroquinonas/química , Fosforilação Oxidativa/efeitos dos fármacos , Sulfonamidas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Hidroquinonas/farmacologia , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
6.
Apoptosis ; 24(7-8): 562-577, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30941553

RESUMO

Breast cancer is the most frequently diagnosed cancer among women worldwide. Here, recombinant human lactoferrin (rhLf) expressed in Pichia pastoris was tested for its potential cytotoxic activity on a panel of six human breast cancer cell lines. The rhLf cytotoxic effect was determined via a live-cell HTS imaging assay. Also, confocal microscopy and flow cytometry protocols were employed to investigate the rhLf mode of action. The rhLf revealed an effective CC50 of 91.4 and 109.46 µg/ml on non-metastatic and metastatic MDA-MB-231 cells, with favorable selective cytotoxicity index values, 11.68 and 13.99, respectively. Moreover, rhLf displayed satisfactory SCI values on four additional cell lines, MDA-MB-468, HCC70, MCF-7 and T-47D (1.55-3.34). Also, rhLf provoked plasma membrane blebbing, chromatin condensation and cell shrinkage in MDA-MB-231 cells, being all three apoptosis-related morphological changes. Also, rhLf was able to shrink the microfilaments, forming a punctuated cytoplasmic pattern in both the MDA-MB-231 and Hs-27 cells, as visualized in confocal photomicrographs. Moreover, performing flow cytometric analysis, rhLf provoked significant phosphatidylserine externalization, cell cycle arrest in the S phase and apoptosis-induced DNA fragmentation in MDA-MB-231 cells. Hence, rhLf possesses selective cytotoxicity on breast cancer cells. Also, rhLf caused apoptosis-associated morphologic changes, disruption of F-actin cytoskeleton organization, phosphatidylserine externalization, DNA fragmentation, and arrest of the cell cycle progression on triple-negative breast cancer MDA-MB-231 cells. Overall results suggest that rhLf is using the apoptosis pathway as its mechanism to inflict cell death. Findings warranty further evaluation of rhLf as a potential anti-breast cancer drug option.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Lactoferrina/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Lactoferrina/genética , Lactoferrina/isolamento & purificação , Lactoferrina/metabolismo , Fosfatidilserinas/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
7.
Cell Biol Toxicol ; 35(6): 503-519, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30825052

RESUMO

In the last 15 years, pyridazinone derivatives have acquired extensive attention due to their widespread biological activities and pharmacological applications. Pyridazinones are well known for their anti-microbial, anti-viral, anti-inflammatory, anti-cancer, and cardiovascular activities, among others. In this study, we evaluated the anti-cancer activity of a new pyridazinone derivative and propose it as a potential anti-neoplastic agent in acute promyelocytic leukemia cells. Pyr-1 cytotoxicity was assessed on several human cancer and two non-cancerous cell lines by the DNS assay. Pyr-1 demonstrated potent cytotoxicity against 22 human cancer cell lines, exhibiting the most favorable selective cytotoxicity on leukemia (CEM and HL-60), breast (MDA-MB-231 and MDA-MB-468), and lung (A-549) cancer cell lines, when compared with non-cancerous breast epithelial MCF-10A cells. Analyses of apoptosis/necrosis pathways, reactive oxygen species (ROS) production, mitochondria health, caspase-3 activation, and cell cycle profile were performed via flow cytometry. Both hmox-1 RNA and protein expression levels were evaluated by quantitative real-time PCR and Western blotting assays, respectively. Pyr-1 induced apoptosis in acute promyelocytic leukemia cells as confirmed by phosphatidylserine externalization, mitochondrial depolarization, caspase-3 activation, DNA fragmentation, and disrupted cell cycle progression. Additionally, it was determined that Pyr-1 generates oxidative and proteotoxic stress by provoking the accumulation of ROS, resulting in the overexpression of the stress-related hmox-1 mRNA transcripts and protein and a marked increase in poly-ubiquitinated proteins. Our data demonstrate that Pyr-1 induces cell death via the intrinsic apoptosis pathway by accumulating ROS and by impairing proteasome activity.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Piridazinas/farmacologia , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Fragmentação do DNA , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Necrose/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas Ubiquitinadas , Proteína X Associada a bcl-2/metabolismo
8.
Nucleic Acids Res ; 45(10): 6217-6227, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28369538

RESUMO

Deoxyribonuclease II (DNase II) is also known as acid deoxyribonuclease because it has optimal activity at the low pH environment of lysosomes where it is typically found in higher eukaryotes. Interestingly, DNase II has also been identified in a few genera of bacteria and is believed to have arisen via horizontal transfer. Here, we demonstrate that recombinant Burkholderia thailandensis DNase II is highly active at low pH in the absence of divalent metal ions, similar to eukaryotic DNase II. The crystal structure of B. thailandensis DNase II shows a dimeric quaternary structure which appears capable of binding double-stranded DNA. Each monomer of B. thailandensis DNase II exhibits a similar overall fold as phospholipase D (PLD), phosphatidylserine synthase (PSS) and tyrosyl-DNA phosphodiesterase (TDP), and conserved catalytic residues imply a similar mechanism. The structural and biochemical data presented here provide insights into the atomic structure and catalytic mechanism of DNase II.


Assuntos
Proteínas de Bactérias/química , Burkholderia/enzimologia , Endodesoxirribonucleases/química , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cobre/farmacologia , Cristalografia por Raios X , DNA Bacteriano/metabolismo , Endodesoxirribonucleases/antagonistas & inibidores , Endodesoxirribonucleases/metabolismo , Células Eucarióticas/enzimologia , Evolução Molecular , Transferência Genética Horizontal , Concentração de Íons de Hidrogênio , Modelos Moleculares , Simulação de Acoplamento Molecular , Filogenia , Células Procarióticas/enzimologia , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
9.
J Virol ; 88(11): 5912-26, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696464

RESUMO

UNLABELLED: Viruses with positive-strand RNA genomes amplify their genomes in replication complexes associated with cellular membranes. Little is known about the mechanism of replication complex formation in cells infected with Nodamura virus. This virus is unique in its ability to lethally infect both mammals and insects. In mice and in larvae of the greater wax moth (Galleria mellonella), Nodamura virus-infected muscle cells exhibit mitochondrial aggregation and membrane rearrangement, leading to disorganization of the muscle fibrils on the tissue level and ultimately in hind limb/segment paralysis. However, the molecular basis for this pathogenesis and the role of mitochondria in Nodamura virus infection remains unclear. Here, we tested the hypothesis that Nodamura virus establishes RNA replication complexes that associate with mitochondria in mammalian cells. Our results showed that Nodamura virus replication complexes are targeted to mitochondria, as evidenced in biochemical, molecular, and confocal microscopy studies. More specifically, we show that the Nodamura virus RNA-dependent RNA polymerase interacts with the outer mitochondrial membranes as an integral membrane protein and ultimately becomes associated with functional replication complexes. These studies will help us to understand the mechanism of replication complex formation and the pathogenesis of Nodamura virus for mammals. IMPORTANCE: This study will further our understanding of Nodamura virus (NoV) genome replication and its pathogenesis for mice. NoV is unique among the Nodaviridae in its ability to infect mammals. Here we show that NoV establishes RNA replication complexes (RCs) in association with mitochondria in mammalian cells. These RCs contain newly synthesized viral RNA and feature a physical interaction between mitochondrial membranes and the viral RNA-dependent RNA polymerase (RdRp), which is mediated by two membrane-associated regions. While the nature of the interaction needs to be explored further, it appears to occur by a mode distinct from that described for the insect nodavirus Flock House virus (FHV). The interaction of the NoV RdRp with mitochondrial membranes is essential for clustering of mitochondria into networks that resemble those described for infected mouse muscle and that are associated with fatal hind limb paralysis. This work therefore provides the first link between NoV RNA replication complex formation and the pathogenesis of this virus for mice.


Assuntos
Mitocôndrias/metabolismo , Mariposas/virologia , Nodaviridae/enzimologia , Infecções por Vírus de RNA/patologia , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/fisiologia , Animais , Sequência de Bases , Northern Blotting , Fracionamento Celular , Membrana Celular/metabolismo , Escherichia coli , Extremidades/patologia , Extremidades/virologia , Immunoblotting , Larva/virologia , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Músculos/virologia , Plasmídeos/genética , RNA Polimerase Dependente de RNA/genética , Alinhamento de Sequência
10.
BMC Neurosci ; 15: 132, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25552352

RESUMO

BACKGROUND: Assembly and disassembly of microtubules (MTs) is critical for neurite outgrowth and differentiation. Evidence suggests that nerve growth factor (NGF) induces neurite outgrowth from PC12 cells by activating the receptor tyrosine kinase, TrkA. G protein-coupled receptors (GPCRs) as well as heterotrimeric G proteins are also involved in regulating neurite outgrowth. However, the possible connection between these pathways and how they might ultimately converge to regulate the assembly and organization of MTs during neurite outgrowth is not well understood. RESULTS: Here, we report that Gßγ, an important component of the GPCR pathway, is critical for NGF-induced neuronal differentiation of PC12 cells. We have found that NGF promoted the interaction of Gßγ with MTs and stimulated MT assembly. While Gßγ-sequestering peptide GRK2i inhibited neurite formation, disrupted MTs, and induced neurite damage, the Gßγ activator mSIRK stimulated neurite outgrowth, which indicates the involvement of Gßγ in this process. Because we have shown earlier that prenylation and subsequent methylation/demethylation of γ subunits are required for the Gßγ-MTs interaction in vitro, small-molecule inhibitors (L-28 and L-23) targeting prenylated methylated protein methyl esterase (PMPMEase) were tested in the current study. We found that these inhibitors disrupted Gßγ and ΜΤ organization and affected cellular morphology and neurite outgrowth. In further support of a role of Gßγ-MT interaction in neuronal differentiation, it was observed that overexpression of Gßγ in PC12 cells induced neurite outgrowth in the absence of added NGF. Moreover, overexpressed Gßγ exhibited a pattern of association with MTs similar to that observed in NGF-differentiated cells. CONCLUSIONS: Altogether, our results demonstrate that ßγ subunit of heterotrimeric G proteins play a critical role in neurite outgrowth and differentiation by interacting with MTs and modulating MT rearrangement.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Microtúbulos/metabolismo , Fator de Crescimento Neural/metabolismo , Neuritos/fisiologia , Animais , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/metabolismo , Crescimento Celular , Células Cultivadas , Cerebelo/citologia , Cerebelo/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Células PC12 , Ratos , Ratos Sprague-Dawley , Tubulina (Proteína)/metabolismo
11.
J Biol Inorg Chem ; 19(6): 967-979, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24737042

RESUMO

Although cisplatin is considered as an effective anti-cancer agent, it has shown limitations and may produce toxicity in patients. Therefore, we synthesized two cis-dichlorideplatinum(II) compounds (13 and 14) composed of meta- and para-N,N-diphenyl pyridineamine ligands through a reaction of the amine precursors and PtCl2 with respective yields of 16 and 47 %. We hypothesized that compounds 13 and 14, with lipophilic ligands, should transport efficiently in cancer cells and demonstrate more effectiveness than cisplatin. When tested for biological activity, compounds 13 and 14 were found to inhibit the growth of MCF 7 and MDA-MB-231 cells (IC50s 1 ± 0.4 µM and 1 ± 0.2 µM for 13 and 14, respectively, and IC50 7.5 ± 1.3 µM for compound 13 and 1 ± 0.3 µM for compound 14). Incidentally, these doses were found to be lower than cisplatin doses (IC50 5 ± 0.7 µM for MCF 7 and 10 ± 1.1 µM for MDA-MB-231). Similar to cisplatin, 13 and 14 interacted with DNA and induced apoptosis. However, unlike cisplatin, they blocked the migration of MDA-MB-231 cells suggesting that in addition to apoptotic and DNA-binding capabilities, these compounds are useful in blocking the metastatic migration of breast cancer cells. To delineate the mechanism of action, computer-aided analyses (DFT calculations) were conducted for compound 13. Results indicate that in vivo, the pyridineamine ligands are likely to dissociate from the complex, forming a platinum DNA adduct with anti-proliferative activity. These results suggest that complexes 13 and 14 hold promise as potential anti-cancer agents.


Assuntos
Aminopiridinas/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Compostos Organoplatínicos/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
12.
Bioorg Med Chem ; 22(2): 842-7, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24368029

RESUMO

Here, we tested seven 2-acylated-1,4-hydronaphthoquinones for their cytotoxic effects on a panel of cancer lymphoma/leukemia cells and compared to a non-cancer origin cell line. Several naphthohydroquinones exhibited selective cytotoxic effects on lymphoma/leukemia cells with lowest activity on non-cancer cells. The mode of cell death induced by an acylated naphthohydroquinone, which has a long alkyl chain, was found to be via apoptosis. Furthermore, the naphthohydroquinone provoked mitochondria depolarization and activation of its downstream effector, caspase-3, thus implicating the intrinsic apoptotic pathway as its mechanism to exert cell death.


Assuntos
Antineoplásicos/farmacologia , Hidroquinonas/farmacologia , Leucemia/tratamento farmacológico , Linfoma/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidroquinonas/síntese química , Hidroquinonas/química , Leucemia/patologia , Linfoma/patologia , Estrutura Molecular , Relação Estrutura-Atividade
13.
J Control Release ; 370: 421-437, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701884

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with a high mortality rate due to limited treatment options. Current therapies cannot effectively reverse the damage caused by IPF. Research suggests that promoting programmed cell death (apoptosis) in myofibroblasts, the key cells driving fibrosis, could be a promising strategy. However, inducing apoptosis in healthy cells like epithelial and endothelial cells can cause unwanted side effects. This project addresses this challenge by developing a targeted approach to induce apoptosis specifically in myofibroblasts. We designed liposomes (LPS) decorated with peptides that recognize VCAM-1, a protein highly expressed on myofibroblasts in fibrotic lungs. These VCAM1-targeted LPS encapsulate Venetoclax (VNT), a small molecule drug that inhibits BCL-2, an anti-apoptotic protein. By delivering VNT directly to myofibroblasts, we hypothesize that VCAM1-VNT-LPS can selectively induce apoptosis in these cells, leading to reduced fibrosis and improved lung function. We successfully characterized VCAM1-VNT-LPS for size, surface charge, and drug loading efficiency. Additionally, we evaluated their stability over three months at different temperatures. In vitro and in vivo studies using a bleomycin-induced mouse model of lung fibrosis demonstrated the therapeutic potential of VCAM1-VNT-LPS. These studies showed a reduction in fibrosis-associated proteins (collagen, α-SMA, VCAM1) and BCL-2, while simultaneously increasing apoptosis in myofibroblasts. These findings suggest that VCAM1-targeted delivery of BCL-2 inhibitors using liposomes presents a promising and potentially selective therapeutic approach for IPF.


Assuntos
Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes , Lipossomos , Camundongos Endogâmicos C57BL , Nanopartículas , Proteínas Proto-Oncogênicas c-bcl-2 , Sulfonamidas , Molécula 1 de Adesão de Célula Vascular , Animais , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Nanopartículas/administração & dosagem , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Molécula 1 de Adesão de Célula Vascular/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Apoptose/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Humanos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Masculino , Camundongos , Bleomicina/administração & dosagem
14.
J Proteome Res ; 12(2): 883-97, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23214914

RESUMO

Microorganisms use specialized systems to export virulence factors into host cells. Secretion of effector proteins into the extracellular environment has been described in Trypanosoma cruzi; however, a comprehensive proteomic analysis of the secretome and the secretion mechanisms involved remain elusive. Here, we present evidence that T. cruzi releases proteins associated with vesicles that are formed by at least two different mechanisms. Transmission electron microscopy showed larger vesicles budding from the plasma membrane of noninfective epimastigotes and infective metacyclic trypomastigotes, as well as smaller vesicles within the flagellar pocket of both forms. Parasite conditioned culture supernatant was fractionated and characterized by morphological, immunochemical, and proteomic analyses. Three fractions were obtained by differential ultracentrifugation: the first enriched in larger vesicles resembling ectosomes, the second enriched in smaller vesicles resembling exosomes, and a third fraction enriched in soluble proteins not associated with extracellular vesicles. Label-free quantitative proteomic analysis revealed a rich collection of proteins involved in metabolism, signaling, nucleic acid binding, and parasite survival and virulence. These findings support the notion that T. cruzi uses different secretion pathways to excrete/secrete proteins. Moreover, our results suggest that metacyclic forms may use extracellular vesicles to deliver cargo into host cells.


Assuntos
Membrana Celular/metabolismo , Flagelos/metabolismo , Estágios do Ciclo de Vida/fisiologia , Proteínas de Protozoários/isolamento & purificação , Trypanosoma cruzi/fisiologia , Fatores de Virulência/isolamento & purificação , Animais , Transporte Biológico , Células Cultivadas , Cromatografia Líquida , Meios de Cultivo Condicionados/química , Camundongos , Microscopia Eletrônica de Transmissão , Proteômica , Proteínas de Protozoários/metabolismo , Vesículas Secretórias , Espectrometria de Massas em Tandem , Ultracentrifugação
15.
Cell Biol Toxicol ; 29(6): 431-43, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24272524

RESUMO

Ruthenium-based compounds have intriguing anti-cancer properties, and some of these novel compounds are currently in clinical trials. To continue the development of new metal-based drug combinations, we coupled ruthenium (Ru) with the azole compounds ketoconazole (KTZ) and clotrimazole (CTZ), which are well-known antifungal agents that also display anticancer properties. We report the activity of a series of 12 Ru-KTZ and Ru-CTZ compounds against three prostate tumor cell lines with different androgen sensitivity, as well as cervical cancer and lymphoblastic lymphoma cell lines. In addition, human cell lines were used to evaluate the toxicity against non-transformed cells and to establish selectivity indexes. Our results indicate that the combination of ruthenium and KTZ/CTZ in a single molecule results in complexes that are more cytotoxic than the individual components alone, displaying in some cases low micromolar CC50 values and high selectivity indexes. Additionally, all compounds are more cytotoxic against prostate cell lines with lower cytotoxicity against non-transformed epidermal cell lines. Some of the compounds were found to primarily induce cell death via apoptosis yet weakly interact with DNA. Our studies also demonstrate that the cytotoxicity induced by our Ru-based compounds is not directly related to their ability to interact with DNA.


Assuntos
Clotrimazol/administração & dosagem , Cetoconazol/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Rutênio/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , DNA de Neoplasias/efeitos dos fármacos , Humanos , Masculino , Neoplasias da Próstata/patologia
16.
Environ Sci Technol ; 47(24): 14110-8, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24266714

RESUMO

Cerium oxide nanoparticles (nCeO2) have been shown to have significant interactions in plants; however, there are limited reports on their impacts in rice (Oryza sativa). Given the widespread environmental dispersal of nCeO2, it is paramount to understand its biochemical and molecular impacts on a globally important agricultural crop, such as rice. This study was carried out to determine the impact of nCeO2 on the oxidative stress, membrane damage, antioxidant enzymes' activities, and macromolecular changes in the roots of rice seedlings. Rice seeds (medium amylose) were grown for 10 days in nCeO2 suspensions (0-500 mg L(-1)). Results showed that Ce in root seedlings increased as the external nCeO2 increased without visible signs of toxicity. Relative to the control, the 62.5 mg nCeO2 L(-1) reduced the H2O2 generation in the roots by 75%. At 125 mg nCeO2 L(-1), the roots showed enhanced lipid peroxidation and electrolyte leakage, while at 500 mg L(-1), the nCeO2 increased the H2O2 generation in roots and reduced the fatty acid content. The lignin content decreased by 20% at 500 mg nCeO2 L(-1), despite the parallel increase in H2O2 content and peroxidase activities. Synchrotron µ-XRF confirmed the presence of Ce in the vascular tissues of the roots.


Assuntos
Cério/química , Substâncias Macromoleculares/metabolismo , Nanopartículas/química , Oryza/enzimologia , Estresse Oxidativo , Plântula/enzimologia , Estresse Fisiológico , Amilose/metabolismo , Antioxidantes/metabolismo , Cério/metabolismo , Eletrólitos/metabolismo , Ácidos Graxos/metabolismo , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Lignina/metabolismo , Peroxidação de Lipídeos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oxirredução , Raízes de Plantas/enzimologia , Plântula/metabolismo , Espectrometria por Raios X , Síncrotrons , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
17.
PLoS One ; 18(12): e0295441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127921

RESUMO

In an effort to identify novel anti-cancer agents, we employed a well-established High Throughput Screening (HTS) assay to assess the cytotoxic effect of compounds within the ChemBridge DIVERSet Library on a lymphoma cell line. This screen revealed a novel thiophene, F8 (methyl 5-[(dimethylamino)carbonyl]-4-methyl-2-[(3-phenyl-2-propynoyl) amino]-3-thiophenecarboxylate), that displays anti-cancer activity on lymphoma, leukemia, and other cancer cell lines. Thiophenes and thiophene derivatives have emerged as an important class of heterocyclic compounds that have displayed favorable drug characteristics. They have been previously reported to exhibit a broad spectrum of properties and varied uses in the field of medicine. In addition, they have proven to be effective drugs in various disease scenarios. They contain anti-inflammatory, anti-anxiety, anti-psychotic, anti-microbial, anti-fungal, estrogen receptor modulating, anti-mitotic, kinase inhibiting and anti-cancer activities, rendering compounds with a thiophene a subject of significant interest in the scientific community. Compound F8 consistently induced cell death at a low micromolar range on a small panel of cancer cell lines after a 48 h period. Further investigation revealed that F8 induced phosphatidylserine externalization, reactive oxygen species generation, mitochondrial depolarization, kinase inhibition, and induces apoptosis. These findings demonstrate that F8 has promising anti-cancer activity.


Assuntos
Antineoplásicos , Linfoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Linhagem Celular Tumoral , Tiofenos/farmacologia , Proliferação de Células , Apoptose , Antineoplásicos/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Estrutura Molecular
18.
J Control Release ; 361: 314-333, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562554

RESUMO

Solid tumors are abnormal mass of tissue, which affects the organs based on its malignancy and leads to the dysfunction of the affected organs. The major problem associated with treatment of solid tumors is delivering anticancer therapeutics to the deepest layers/core of the solid tumor. Deposition of excessive extracellular matrix (ECM) hinders the therapeutics to travel towards the core of the tumor. Therefore, conventional anticancer therapeutics can only reduce the tumor size and that also for a limited duration, and tumor recurrence occurs once the therapy is discontinued. Additionally, by the time the cancer is diagnosed, the cancer cells already started affecting the major organs of the body such as lung, liver, spleen, kidney, and brain, due to their ability to metastasize and lung is the primary site for them to be infiltrated. To facilitate the anticancer therapeutics to penetrate the deeper layers of tumor, and to provide concurrent treatment of both the solid tumor and metastasis, we have designed and developed a Bimodal Light Assisted Skin Tumor and Metastasis Treatment (BLAST), which is a combination of photothermal and chemotherapeutic moieties. The BLAST is composed of 2D boron nitride (BN) nanosheet with adsorbed molecules of BCL-2 inhibitor, Navitoclax (NAVI) on its surface, that can breakdown excessive ECM network and thereby facilitate dissociation of the solid tumor. The developed BLAST was evaluated for its ability to penetrate solid tumors using 3D spheroids for the uptake, cytotoxicity, growth inhibition, reactive oxygen species (ROS) detection, penetration, and downregulation of proteins upon laser irradiation. The in vivo therapeutic studies on a skin cancer mice model revealed that the BLAST with and without laser were able to penetrate the solid tumor, reduce tumor volume in mice, dissociate the protein network, and prevent lung metastasis as confirmed by immunohistochemistry and western blot analysis. Post analysis of serum and blood components revealed the safety and efficacy of BLAST in mice. Hence, the developed BLAST holds strong promise in solid tumor treatment and metastasis prevention simultaneously.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Melanoma , Animais , Camundongos , Fototerapia , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Luz , Melanoma/tratamento farmacológico , Linhagem Celular Tumoral
19.
ACS Pharmacol Transl Sci ; 6(5): 829-841, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37200808

RESUMO

Pathological fibrosis is distinguished from physiological wound healing by persistent myofibroblast activation, suggesting that therapies that induce myofibroblast apoptosis selectively could prevent progression and potentially reverse the established fibrosis, such as for scleroderma (a heterogeneous autoimmune disease characterized by multiorgan fibrosis). Navitoclax (NAVI) is a BCL-2/BCL-xL inhibitor with antifibrotic properties and has been investigated as a potential therapeutic for fibrosis. NAVI makes myofibroblasts particularly vulnerable to apoptosis. However, despite NAVI's significant potency, clinical translation of BCL-2 inhibitors, NAVI in this case, is hindered due to the risk of thrombocytopenia. Therefore, in this work, we utilized a newly developed ionic liquid formulation of NAVI for direct topical application to the skin, thereby avoiding systemic circulation and off-target-mediated side effects. The ionic liquid composed of choline and octanoic acid (COA) at a 1:2 molar ionic ratio increases skin diffusion and transportation of NAVI and maintains their retention within the dermis for a prolonged duration. Topical administration of NAVI-mediated BCL-xL and BCL-2 inhibition results in the transition of myofibroblast to fibroblast and ameliorates pre-existing fibrosis, as demonstrated in a scleroderma mouse model. We have observed a significant reduction of α-SMA and collagen, which are known as fibrosis marker proteins, as a result of the inhibition of anti-apoptotic proteins BCL-2/BCL-xL. Overall, our findings show that COA-assisted topical delivery of NAVI upregulates apoptosis specific to myofibroblasts, with minimal presence of the drug in the systemic circulation, resulting in an accelerated therapeutic effect with no discernible drug-associated toxicity.

20.
Biochem Biophys Res Commun ; 426(3): 438-44, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22974977

RESUMO

Mitochondrial dysfunction, leading to elevated levels of reactive oxygen species, is associated with the pathogenesis of neurodegenerative disorders. Rotenone, a mitochondrial stressor induces caspase-9 and caspase-3 activation leading proteolytic cleavage of substrate nuclear poly(ADP-ribose) polymerase (PARP). PARP cleavage is directly related to apoptotic cell death. In this study, we have monitored the aggregation of green-fluorescent protein (GFP)-tagged synphilin-1, as a rotenone-induced Parkinsonia-onset biomarker. We report that the innate ketone body, Na-D-ß-hydroxybutyrate (NaßHB) reduces markedly the incidence of synphilin-1 aggregation. Furthermore, our data reveal that the metabolic byproduct also prevents rotenone-induced caspase-activated apoptotic cell death in dopaminergic SH-SY5Y cells. Together, these results suggest that NaßHB is neuroprotective; it attenuates effects originating from mitochondrial insult and can serve as a scaffold for the design and development of sporadic neuropathies.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/farmacologia , Nitratos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Transporte/análise , Caspases/metabolismo , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/metabolismo , Humanos , Doenças Mitocondriais/metabolismo , Necrose , Proteínas do Tecido Nervoso/análise , Nitrosação , Doença de Parkinson/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Rotenona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA