Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genet Sel Evol ; 56(1): 33, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698321

RESUMO

BACKGROUND: Recursive models are a category of structural equation models that propose a causal relationship between traits. These models are more parameterized than multiple trait models, and they require imposing restrictions on the parameter space to ensure statistical identification. Nevertheless, in certain situations, the likelihood of recursive models and multiple trait models are equivalent. Consequently, the estimates of variance components derived from the multiple trait mixed model can be converted into estimates under several recursive models through LDL' or block-LDL' transformations. RESULTS: The procedure was employed on a dataset comprising five traits (birth weight-BW, weight at 90 days-W90, weight at 210 days-W210, cold carcass weight-CCW and conformation-CON) from the Pirenaica beef cattle breed. These phenotypic records were unequally distributed among 149,029 individuals and had a high percentage of missing data. The pedigree used consisted of 343,753 individuals. A Bayesian approach involving a multiple-trait mixed model was applied using a Gibbs sampler. The variance components obtained at each iteration of the Gibbs sampler were subsequently used to estimate the variance components within three distinct recursive models. CONCLUSIONS: The LDL' or block-LDL' transformations applied to the variance component estimates achieved from a multiple trait mixed model enabled inference across multiple sets of recursive models, with the sole prerequisite of being likelihood equivalent. Furthermore, the aforementioned transformations simplify the handling of missing data when conducting inference within the realm of recursive models.


Assuntos
Modelos Genéticos , Animais , Bovinos/genética , Teorema de Bayes , Fenótipo , Cruzamento/métodos , Cruzamento/normas , Peso ao Nascer/genética , Linhagem , Característica Quantitativa Herdável
2.
J Anim Breed Genet ; 141(2): 153-162, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37888514

RESUMO

Crossbreeding plays a pivotal role within pig breeding programmes, aiming to maximize heterosis and improve reproductive traits in crossbred maternal lines. Nevertheless, there is evidence indicating that the performance of reciprocal crosses between two genetic lines might exhibit variability. These variations in performance can be attributed to differences in the correlations between gametic effects, acting as either sire or dam, within purebred and crossbred populations. To address this issue, we propose a multivariate gametic model that incorporates up to four correlated gametic effects for each parental population. The model is employed on a data set comprising litter size data (total number of piglets born-TNB- and number of piglets born alive-NBA-) derived from a reciprocal cross involving two Iberian pig populations: Entrepelado and Retinto. The data set comprises 6933 records from 1564 purebred Entrepelado (EE) sows, 4995 records from 1015 Entrepelado × Retinto (ER) crosses, 2977 records from 756 Retinto × Entrepelado (RE) crosses and 7497 records from 1577 purebred Retinto (RR) sows. The data set is further supplemented by a pedigree encompassing 6007 individual-sire-dam entries. The statistical model also included the order of parity (with six levels), the breed of the service sire (five levels) and the herd-year-season effects (141 levels). Additionally, the model integrates random dominant and permanent environmental sow effects. The analysis employed a Bayesian approach, and the results revealed all the posterior estimates of the gametic correlations to be positive. The range of the posterior mean estimates of the correlations varied across different gametic effects and traits, with a range between 0.04 (gametic correlation between the paternal effects for purebred and the maternal for crossbred in Retinto) and 0.53 (gametic correlation between the paternal effects for purebred and the paternal for crossbred in Entrepelado). Furthermore, the posterior mean variance estimates of the maternal gametic effects were consistently surpassed those for paternal effects within all four populations. The results suggest the possible influence of imprinting effects on the genetic control of litter size, and underscore the importance of incorporating crossbred data into the breeding value predictions for purebred individuals.


Assuntos
Cruzamento , Hibridização Genética , Humanos , Gravidez , Suínos/genética , Animais , Feminino , Teorema de Bayes , Reprodução , Vigor Híbrido , Cruzamentos Genéticos
3.
J Anim Breed Genet ; 140(6): 596-606, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37287409

RESUMO

It is generally assumed that parents make a genetically equal contribution to their offspring, but this assumption might not always hold. This is because the expression of a gene can be blocked by methylation during gametogenesis, and the degree of methylation can depend on the origin of the parental gene (imprinting) or by preferential management associated with genetic merit. The first consequences of this for quantitative genetics is that the mean phenotypes of reciprocal heterozygotes need no longer be the same, as would be expected according to Mendelian heritage. We analysed three mare reproductive traits (reproductive efficiency, age at first foaling and foaling number) and three morphological traits (height at withers, thoracic circumference, and scapula-ischial length) in the Pura Raza Española (PRE) horse population, which possesses a deep and reliable pedigree, making it a perfect breed for analysing the quantitative effect of parent-of-origin. The number of animals analysed ranged from 44,038 to 144,191, all of them with both parents known. The model comparison between a model without parent-of-origin effects and three different models with parent-of-origin effects revealed that both maternal and paternal gametic effects influence all the analysed traits. The maternal gametic effect had a higher influence on most traits, accounting for between 3% and 11% of the total phenotypic variance, while the paternal gametic effect accounted for a higher proportion of variance in one trait, age at first foaling (4%). As expected, the Pearson's correlations between additive breeding values of models that consider parent-of-origin and that do not consider parent-of-origin were very high; however, the percentage of coincident animals slightly decreases when comparing animals with the highest estimated breeding values. Ultimately, this work demonstrates that parent-of-origin effects exist in horse gene transmission from a quantitative point of view. Additionally, including an estimate of the parent-of-origin effect within the PRE horse breeding program could be a great tool for a better parent's selection and that could be of interest for breeders, as this value will determine whether the animals acquire genetic categories and are much more highly valued.


Assuntos
Reprodução , Animais , Cavalos/genética , Feminino , Seleção de Pacientes , Fenótipo , Alelos , Reprodução/genética , Linhagem
4.
Eur J Neurol ; 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36484631

RESUMO

INTRODUCTION: The aim of this study is to describe the frequency and distribution of SOD1 mutations in Spain, and to explore those factors contributing to their phenotype and prognosis. METHODS: Seventeen centres shared data on amyotrophic lateral sclerosis (ALS) patients carrying pathogenic or likely pathogenic SOD1 variants. Multivariable models were used to explore prognostic modifiers. RESULTS: In 144 patients (from 88 families), 29 mutations (26 missense, 2 deletion/insertion and 1 frameshift) were found in all 5 exons of SOD1, including 7 novel mutations. 2.6% of ALS patients (including 17.7% familial and 1.3% sporadic) were estimated to carry SOD1 mutations. Its frequency varied considerably between regions, due to founder events. The most frequent mutation was p.Gly38Arg (n = 58), followed by p.Glu22Gly (n = 11), p.Asn140His (n = 10), and the novel p.Leu120Val (n = 10). Most mutations were characterized by a protracted course, and some of them by atypical phenotypes. Older age of onset was independently associated with faster disease progression (exp(Estimate) = 1.03 [0.01, 0.05], p = 0.001) and poorer survival (HR = 1.05 [1.01, 1.08], p = 0.007), regardless of the underlying mutation. Female sex was independently associated to faster disease progression (exp(Estimate) = 2.1 [1.23, 3.65], p = 0.012) in patients carrying the p.Gly38Arg mutation, resulting in shorter survival compared with male carriers (236 vs 301 months). CONCLUSIONS: These data may help to evaluate the efficacy of SOD1 targeted treatments, and to expand the number of patients that might benefit from these treatments.

5.
Genet Sel Evol ; 54(1): 46, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761200

RESUMO

BACKGROUND: The rabbit cecum hosts and interacts with a complex microbial ecosystem that contributes to the variation of traits of economic interest. Although the influence of host genetics on microbial diversity and specific microbial taxa has been studied in several species (e.g., humans, pigs, or cattle), it has not been investigated in rabbits. Using a Bayes factor approach, the aim of this study was to dissect the effects of host genetics, litter and cage on 984 microbial traits that are representative of the rabbit microbiota. RESULTS: Analysis of 16S rDNA sequences of cecal microbiota from 425 rabbits resulted in the relative abundances of 29 genera, 951 operational taxonomic units (OTU), and four microbial alpha-diversity indices. Each of these microbial traits was adjusted with mixed linear and zero-inflated Poisson (ZIP) models, which all included additive genetic, litter and cage effects, and body weight at weaning and batch as systematic factors. The marginal posterior distributions of the model parameters were estimated using MCMC Bayesian procedures. The deviance information criterion (DIC) was used for model comparison regarding the statistical distribution of the data (normal or ZIP), and the Bayes factor was computed as a measure of the strength of evidence in favor of the host genetics, litter, and cage effects on microbial traits. According to DIC, all microbial traits were better adjusted with the linear model except for the OTU present in less than 10% of the animals, and for 25 of the 43 OTU with a frequency between 10 and 25%. On a global scale, the Bayes factor revealed substantial evidence in favor of the genetic control of the number of observed OTU and Shannon indices. At the taxon-specific level, significant proportions of the OTU and relative abundances of genera were influenced by additive genetic, litter, and cage effects. Several members of the genera Bacteroides and Parabacteroides were strongly influenced by the host genetics and nursing environment, whereas the family S24-7 and the genus Ruminococcus were strongly influenced by cage effects. CONCLUSIONS: This study demonstrates that host genetics shapes the overall rabbit cecal microbial diversity and that a significant proportion of the taxa is influenced either by host genetics or environmental factors, such as litter and/or cage.


Assuntos
Microbiota , Animais , Teorema de Bayes , Bovinos , Ceco , Microbiota/genética , RNA Ribossômico 16S/genética , Coelhos , Suínos , Desmame
6.
J Dairy Sci ; 104(9): 10040-10048, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34147228

RESUMO

Our study investigated the inbreeding load for fertility traits in the Italian Brown Swiss dairy cattle breed. Fertility traits included continuous traits (i.e., interval from calving to first service, days open, and calving interval) and categorical traits (i.e., calving rate at first insemination and nonreturn date at d 56). We included only records of the first 3 parities of cows that calved between 2010 and 2018. We traced up the pedigree of the cows with records as far as possible, ending up with a total of 73,246 animals. The final data set consisted of 59,864 records from 34,921 cows. We analyzed all models using a Bayesian approach that included a covariate with total inbreeding in addition to systematic, permanent environment, additive genetic, and inbreeding load effects. We then evaluated the trends in heritabilities and ratios of the inbreeding load using a continuum of partial inbreeding coefficients from 0.001 to 0.100 as reference. Posterior estimates of heritabilities tended to decrease across the continuum, whereas ratios of the inbreeding load tended to increase, more noticeably in categorical traits (calving rate at first insemination and nonreturn date at d 56). From the results obtained, we confirmed the presence of heterogeneity in inbreeding depression. We then predicted the inbreeding load effects, which had a low reliability of prediction, explained by having only 513 ancestors generating inbreeding. However, reliability of prediction was high enough for some of the individuals, obtaining a favorable prediction of inbreeding load for a relevant percentage, which improved the phenotypic performance of their inbred descendants. These results make it feasible to implement breeding and management strategies that select ancestors with a favorable inbreeding load prediction. In addition, it opens the possibility to define a global index for the expected consequences of the inbreeding generated by each individual.


Assuntos
Endogamia , Lactação , Animais , Teorema de Bayes , Bovinos/genética , Feminino , Fertilidade/genética , Reprodutibilidade dos Testes
7.
J Dairy Sci ; 104(7): 8135-8151, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33896632

RESUMO

The rumen is a complex microbial system of substantial importance in terms of greenhouse gas emissions and feed efficiency. This study proposes combining metagenomic and host genomic data for selective breeding of the cow hologenome toward reduced methane emissions. We analyzed nanopore long reads from the rumen metagenome of 437 Holstein cows from 14 commercial herds in 4 northern regions in Spain. After filtering, data were treated as compositional. The large complexity of the rumen microbiota was aggregated, through principal component analysis (PCA), into few principal components (PC) that were used as proxies of the core metagenome. The PCA allowed us to condense the huge and fuzzy taxonomical and functional information from the metagenome into a few PC. Bivariate animal models were applied using these PC and methane production as phenotypes. The variability condensed in these PC is controlled by the cow genome, with heritability estimates for the first PC of ~0.30 at all taxonomic levels, with a large probability (>83%) of the posterior distribution being >0.20 and with the 95% highest posterior density interval (95%HPD) not containing zero. Most genetic correlation estimates between PC1 and methane were large (≥0.70), with most of the posterior distribution (>82%) being >0.50 and with its 95%HPD not containing zero. Enteric methane production was positively associated with relative abundance of eukaryotes (protozoa and fungi) through the first component of the PCA at phylum, class, order, family, and genus. Nanopore long reads allowed the characterization of the core rumen metagenome using whole-metagenome sequencing, and the purposed aggregated variables could be used in animal breeding programs to reduce methane emissions in future generations.


Assuntos
Metano , Microbiota , Animais , Bovinos/genética , Feminino , Fermentação , Metano/metabolismo , Microbiota/genética , Rúmen/metabolismo , Seleção Artificial , Espanha
8.
Genet Sel Evol ; 52(1): 62, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33081691

RESUMO

BACKGROUND: Inbreeding is caused by mating between related individuals and is associated with reduced fitness and performance (inbreeding depression). Several studies have detected heterogeneity in inbreeding depression among founder individuals. Recently, a procedure was developed to predict hidden inbreeding depression load that is associated with founders using the Mendelian sampling of non-founders. The objectives of this study were to: (1) analyse the population structure and general inbreeding, and (2) test this recent approach for predicting hidden inbreeding depression load for four morphological traits and two morphology defects in the Pura Raza Española (PRE) horse breed. RESULTS: The regression coefficients that were calculated between trait performances and inbreeding coefficients demonstrated the existence of inbreeding depression. In total, 58,772,533 partial inbreeding coefficients (Fij) were estimated for the whole PRE population (328,706 horses). We selected the descendants of horses with a Fij ≥ 6.25% that contributed to at least four offspring and for which morphological traits were measured for the subsequent analysis of inbreeding depression load (639 horses). A pedigree was generated with the last five generations (5026 animals) used as the reference population (average inbreeding coefficient of 8.39% and average relatedness coefficient of 10.76%). Heritability estimates ranged from 0.08 (cresty neck) to 0.80 (height at withers), whereas inbreeding depression load ratios ranged from 0.01 (knock knee) to 0.40 (length of shoulder), for an inbreeding coefficient of 10%. Most of the correlations between additive and inbreeding depression load genetic values and correlations between inbreeding depression load genetic values for the different traits were positive or near 0. CONCLUSIONS: Although the average inbreeding depression loads presented negative values, a certain percentage of the animals showed neutral or even positive values. Thus, high levels of inbreeding do not always lead to a decrease in mean phenotypic value or an increase in morphological defects. Hence, individual inbreeding depression loads could be used as a tool to select the most appropriate breeding animals. The possibility of selecting horses that have a high genetic value and are more resistant to the deleterious effects of inbreeding should help improve selection outcomes.


Assuntos
Cavalos/genética , Depressão por Endogamia , Característica Quantitativa Herdável , Animais , Aptidão Genética , Carga Genética , Cavalos/anatomia & histologia , Linhagem
9.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210181

RESUMO

BACKGROUND: Epigenetic changes in obstructive sleep apnea (OSA) have been proposed as a mechanism for end-organ vulnerability. In children with OSA, Forkhead Box P3 (FOXP3) DNA methylation were associated with inflammatory biomarkers; however, the methylation pattern and its effect in the expression of this gene have not been tested in adults with OSA. METHODS: Plasma samples from subjects without comorbid conditions other than OSA were analyzed (the Epigenetics Status and Subclinical Atherosclerosis in Obstructive Sleep Apnea (EPIOSA) Study: NCT02131610). In 16 patients with severe OSA (Apnea-Hypopnea Index-AHI- > 30 events/h) and seven matched controls (AHI < 5), methylation of FOXP3 gen was evaluated by PCR of the promoter and by pyrosequencing of the intron 1 Treg-specific demethylated region (TSDR). In another 74 patients with OSA (AHI > 10) and 31 controls, we quantified FOXP3 protein expression by ELISA and gene expression by quantitative real-time PCR. C-reactive protein (CRP) and plasma Treg cells were also evaluated. RESULTS: Neither the levels of the promoter nor the TSDR demethylated region were different between controls and patients with OSA, whether they were grouped by normal or high CRP. FOXP3 protein and mRNA expression did not differ between groups. CONCLUSIONS: FOXP3 methylation or its expression is not altered in adults with OSA, whatever their inflammatory status.


Assuntos
Metilação de DNA , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Apneia Obstrutiva do Sono/genética , Adulto , Biomarcadores , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/fisiopatologia
10.
Genet Sel Evol ; 51(1): 78, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31878872

RESUMO

BACKGROUND: Inbreeding is caused by mating between related individuals and its most common consequence is inbreeding depression. Several studies have detected heterogeneity in inbreeding depression among founder individuals, and recently a procedure for predicting hidden inbreeding depression loads associated with founders and the Mendelian sampling of non-founders has been developed. The objectives of our study were to expand this model to predict the inbreeding loads for all individuals in the pedigree and to estimate the covariance between the inbreeding loads and the additive genetic effects for the trait of interest. We tested the proposed approach with simulated data and with two datasets of records on weaning weight from the Spanish Pirenaica and Rubia Gallega beef cattle breeds. RESULTS: The posterior estimates of the variance components with the simulated datasets did not differ significantly from the simulation parameters. In addition, the correlation between the predicted and simulated inbreeding loads were always positive and ranged from 0.27 to 0.82. The beef cattle datasets comprised 35,126 and 75,194 records on weights between 170 and 250 days of age, and pedigrees of 308,836 and 384,434 individual-sire-dam entries for the Pirenaica and Rubia Gallega breeds, respectively. The posterior mean estimates of the variance of inbreeding depression loads were 29,967.8 and 28,222.4 for the Pirenaica and Rubia Gallega breeds, respectively. They were larger than those of the additive variance (695.0 and 439.8 for Pirenaica and Rubia Gallega, respectively), because they should be understood as the variance of the inbreeding depression achieved by a fully inbred (100%) descendant. Therefore, the inbreeding loads have to be rescaled for smaller inbreeding coefficients. In addition, a strong negative correlation (- 0.43 ± 0.10) between additive effects and inbreeding loads was detected in the Pirenaica, but not in the Rubia Gallega breed. CONCLUSIONS: The results of the simulation study confirmed the ability of the proposed procedure to predict inbreeding depression loads for all individuals in the populations. Furthermore, the results obtained from the two real datasets confirmed the variability in the inbreeding depression loads in both breeds and suggested a negative correlation of the inbreeding loads with the additive genetic effects in the Pirenaica breed.


Assuntos
Depressão por Endogamia , Animais , Bovinos , Modelos Genéticos , Análise Multivariada , Linhagem
11.
Genet Sel Evol ; 50(1): 1, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373954

RESUMO

BACKGROUND: The quantitative genetics theory argues that inbreeding depression and heterosis are founded on the existence of directional dominance. However, most procedures for genomic selection that have included dominance effects assumed prior symmetrical distributions. To address this, two alternatives can be considered: (1) assume the mean of dominance effects different from zero, and (2) use skewed distributions for the regularization of dominance effects. The aim of this study was to compare these approaches using two pig datasets and to confirm the presence of directional dominance. RESULTS: Four alternative models were implemented in two datasets of pig litter size that consisted of 13,449 and 11,581 records from 3631 and 2612 sows genotyped with the Illumina PorcineSNP60 BeadChip. The models evaluated included (1) a model that does not consider directional dominance (Model SN), (2) a model with a covariate b for the average individual homozygosity (Model SC), (3) a model with a parameter λ that reflects asymmetry in the context of skewed Gaussian distributions (Model AN), and (4) a model that includes both b and λ (Model Full). The results of the analysis showed that posterior probabilities of a negative b or a positive λ under Models SC and AN were higher than 0.99, which indicate positive directional dominance. This was confirmed with the predictions of inbreeding depression under Models Full, SC and AN, that were higher than in the SN Model. In spite of differences in posterior estimates of variance components between models, comparison of models based on LogCPO and DIC indicated that Model SC provided the best fit for the two datasets analyzed. CONCLUSIONS: Our results confirmed the presence of positive directional dominance for pig litter size and suggested that it should be taken into account when dominance effects are included in genomic evaluation procedures. The consequences of ignoring directional dominance may affect predictions of breeding values and can lead to biased prediction of inbreeding depression and performance of potential mates. A model that assumes Gaussian dominance effects that are centered on a non-zero mean is recommended, at least for datasets with similar features to those analyzed here.


Assuntos
Cruzamento , Genômica/métodos , Tamanho da Ninhada de Vivíparos/genética , Modelos Genéticos , Sus scrofa/genética , Animais , Cruzamentos Genéticos , Feminino , Genes Dominantes , Genótipo , Gravidez , Suínos/genética
12.
BMC Genet ; 17(1): 91, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27342071

RESUMO

BACKGROUND: The effects of different evolutionary forces are expected to lead to the conservation, over many generations, of particular genomic regions (haplotypes) due to the development of linkage disequilibrium (LD). The detection and identification of early (ancestral) haplotypes can be used to clarify the evolutionary dynamics of different populations as well as identify selection signatures and genomic regions of interest to be used both in conservation and breeding programs. The aims of this study were to develop a simple procedure to identify ancestral haplotypes segregating across several generations both within and between populations with genetic links based on whole-genome scanning. This procedure was tested with simulated and then applied to real data from different genotyped populations of Spanish, Fleckvieh, Simmental and Brown-Swiss cattle. RESULTS: The identification of ancestral haplotypes has shown coincident patterns of selection across different breeds, allowing the detection of common regions of interest on different bovine chromosomes and mirroring the evolutionary dynamics of the studied populations. These regions, mainly located on chromosomes BTA5, BTA6, BTA7 and BTA21 are related with certain animal traits such as coat colour and milk protein and fat content. CONCLUSION: In agreement with previous studies, the detection of ancestral haplotypes provides useful information for the development and comparison of breeding and conservation programs both through the identification of selection signatures and other regions of interest, and as indicator of the general genetic status of the populations.


Assuntos
Evolução Molecular , Haplótipos , Gado/genética , Animais , Bovinos , Feminino , Variação Genética , Masculino , Modelos Genéticos
13.
Genet Sel Evol ; 48: 6, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26825279

RESUMO

BACKGROUND: Most developments in quantitative genetics theory focus on the study of intra-breed/line concepts. With the availability of massive genomic information, it becomes necessary to revisit the theory for crossbred populations. We propose methods to construct genomic covariances with additive and non-additive (dominance) inheritance in the case of pure lines and crossbred populations. RESULTS: We describe substitution effects and dominant deviations across two pure parental populations and the crossbred population. Gene effects are assumed to be independent of the origin of alleles and allelic frequencies can differ between parental populations. Based on these assumptions, the theoretical variance components (additive and dominant) are obtained as a function of marker effects and allelic frequencies. The additive genetic variance in the crossbred population includes the biological additive and dominant effects of a gene and a covariance term. Dominance variance in the crossbred population is proportional to the product of the heterozygosity coefficients of both parental populations. A genomic BLUP (best linear unbiased prediction) equivalent model is presented. We illustrate this approach by using pig data (two pure lines and their cross, including 8265 phenotyped and genotyped sows). For the total number of piglets born, the dominance variance in the crossbred population represented about 13 % of the total genetic variance. Dominance variation is only marginally important for litter size in the crossbred population. CONCLUSIONS: We present a coherent marker-based model that includes purebred and crossbred data and additive and dominant actions. Using this model, it is possible to estimate breeding values, dominant deviations and variance components in a dataset that comprises data on purebred and crossbred individuals. These methods can be exploited to plan assortative mating in pig, maize or other species, in order to generate superior crossbred individuals in terms of performance.


Assuntos
Cruzamentos Genéticos , Genes Dominantes , Genômica , Modelos Genéticos , Seleção Artificial , Sus scrofa/genética , Alelos , Animais , Feminino , Frequência do Gene , Heterozigoto , Fenótipo , Polimorfismo de Nucleotídeo Único
14.
Genet Sel Evol ; 48(1): 81, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27793093

RESUMO

BACKGROUND: Procedures for the detection of signatures of selection can be classified according to the source of information they use to reject the null hypothesis of absence of selection. Three main groups of tests can be identified that are based on: (1) the analysis of the site frequency spectrum, (2) the study of the extension of the linkage disequilibrium across the length of the haplotypes that surround the polymorphism, and (3) the differentiation among populations. The aim of this study was to compare the performance of a subset of these procedures by using a dataset on seven Spanish autochthonous beef cattle populations. RESULTS: Analysis of the correlations between the logarithms of the statistics that were obtained by 11 tests for detecting signatures of selection at each single nucleotide polymorphism confirmed that they can be clustered into the three main groups mentioned above. A factor analysis summarized the results of the 11 tests into three canonical axes that were each associated with one of the three groups. Moreover, the signatures of selection identified with the first and second groups of tests were shared across populations, whereas those with the third group were more breed-specific. Nevertheless, an enrichment analysis identified the metabolic pathways that were associated with each group; they coincided with canonical axes and were related to immune response, muscle development, protein biosynthesis, skin and pigmentation, glucose metabolism, fat metabolism, embryogenesis and morphology, heart and uterine metabolism, regulation of the hypothalamic-pituitary-thyroid axis, hormonal, cellular cycle, cell signaling and extracellular receptors. CONCLUSIONS: We show that the results of the procedures used to identify signals of selection differed substantially between the three groups of tests. However, they can be classified using a factor analysis. Moreover, each canonical factor that coincided with a group of tests identified different signals of selection, which could be attributed to processes of selection that occurred at different evolutionary times. Nevertheless, the metabolic pathways that were associated with each group of tests were similar, which suggests that the selection events that occurred during the evolutionary history of the populations probably affected the same group of traits.


Assuntos
Cruzamento/métodos , Bovinos/genética , Bovinos/fisiologia , Seleção Genética , Animais , Feminino , Genômica , Genótipo , Haplótipos , Desequilíbrio de Ligação , Masculino , Redes e Vias Metabólicas , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Espanha
15.
Genet Sel Evol ; 48: 9, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26830357

RESUMO

BACKGROUND: Reproductive traits such as number of stillborn piglets (SB) and number of teats (NT) have been evaluated in many genome-wide association studies (GWAS). Most of these GWAS were performed under the assumption that these traits were normally distributed. However, both SB and NT are discrete (e.g. count) variables. Therefore, it is necessary to test for better fit of other appropriate statistical models based on discrete distributions. In addition, although many GWAS have been performed, the biological meaning of the identified candidate genes, as well as their functional relationships still need to be better understood. Here, we performed and tested a Bayesian treatment of a GWAS model assuming a Poisson distribution for SB and NT in a commercial pig line. To explore the biological role of the genes that underlie SB and NT and identify the most likely candidate genes, we used the most significant single nucleotide polymorphisms (SNPs), to collect related genes and generated gene-transcription factor (TF) networks. RESULTS: Comparisons of the Poisson and Gaussian distributions showed that the Poisson model was appropriate for SB, while the Gaussian was appropriate for NT. The fitted GWAS models indicated 18 and 65 significant SNPs with one and nine quantitative trait locus (QTL) regions within which 18 and 57 related genes were identified for SB and NT, respectively. Based on the related TF, we selected the most representative TF for each trait and constructed a gene-TF network of gene-gene interactions and identified new candidate genes. CONCLUSIONS: Our comparative analyses showed that the Poisson model presented the best fit for SB. Thus, to increase the accuracy of GWAS, counting models should be considered for this kind of trait. We identified multiple candidate genes (e.g. PTP4A2, NPHP1, and CYP24A1 for SB and YLPM1, SYNDIG1L, TGFB3, and VRTN for NT) and TF (e.g. NF-κB and KLF4 for SB and SOX9 and ELF5 for NT), which were consistent with known newborn survival traits (e.g. congenital heart disease in fetuses and kidney diseases and diabetes in the mother) and mammary gland biology (e.g. mammary gland development and body length).


Assuntos
Teorema de Bayes , Estudo de Associação Genômica Ampla , Reprodução/genética , Sus scrofa/genética , Animais , Feminino , Redes Reguladoras de Genes , Genótipo , Distribuição Normal , Fenótipo , Distribuição de Poisson , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
16.
Genet Sel Evol ; 47: 63, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26268933

RESUMO

BACKGROUND: Mixed models are commonly used for the estimation of variance components and genetic evaluation of livestock populations. Some evaluation models include two types of additive genetic effects, direct and maternal. Estimates of variance components obtained with models that account for maternal effects have been the subject of a long-standing controversy about strong negative estimates of the covariance between direct and maternal effects. Genomic imprinting is known to be in some cases statistically confounded with maternal effects. In this study, we analysed the consequences of ignoring paternally inherited effects on the partitioning of genetic variance. RESULTS: We showed that the existence of paternal parent-of-origin effects can bias the estimation of variance components when maternal effects are included in the evaluation model. Specifically, we demonstrated that adding a constraint on the genetic parameters of a maternal model resulted in correlations between relatives that were the same as those obtained with a model that fits only paternally inherited effects for most pairs of individuals, as in livestock pedigrees. The main consequence is an upward bias in the estimates of the direct and maternal additive genetic variances and a downward bias in the direct-maternal genetic covariance. This was confirmed by a simulation study that investigated five scenarios, with the trait affected by (1) only additive genetic effects, (2) only paternally inherited effects, (3) additive genetic and paternally inherited effects, (4) direct and maternal additive genetic effects and (5) direct and maternal additive genetic plus paternally inherited effects. For each scenario, the existence of a paternally inherited effect not accounted for by the estimation model resulted in a partitioning of the genetic variance according to the predicted pattern. In addition, a model comparison test confirmed that direct and maternal additive models and paternally inherited models provided an equivalent fit. CONCLUSIONS: Ignoring paternally inherited effects in the maternal models for genetic evaluation can lead to a specific pattern of bias in variance component estimates, which may account for the unexpectedly strong negative direct-maternal genetic correlations that are typically reported in the literature.


Assuntos
Impressão Genômica , Gado/genética , Análise de Variância , Animais , Variação Genética , Modelos Genéticos , Característica Quantitativa Herdável
17.
Genet Sel Evol ; 47: 1, 2015 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-25595431

RESUMO

BACKGROUND: The current availability of genotypes for very large numbers of single nucleotide polymorphisms (SNPs) is leading to more accurate estimates of inbreeding coefficients and more detailed approaches for detecting inbreeding depression. In the present study, genome-wide information was used to detect inbreeding depression for two reproductive traits (total number of piglets born and number of piglets born alive) in an ancient strain of Iberian pigs (the Guadyerbas strain) that is currently under serious danger of extinction. METHODS: A total of 109 sows with phenotypic records were genotyped with the PorcineSNP60 BeadChip v1. Inbreeding depression was estimated using a bivariate animal model in which the inbreeding coefficient was included as a covariate. We used two different measures of genomic inbreeding to perform the analyses: inbreeding estimated on a SNP-by-SNP basis and inbreeding estimated from runs of homozygosity. We also performed the analyses using pedigree-based inbreeding. RESULTS: Significant inbreeding depression was detected for both traits using all three measures of inbreeding. Genome-wide information allowed us to identify one region on chromosome 13 associated with inbreeding depression. This region spans from 27 to 54 Mb and overlaps with a previously detected quantitative trait locus and includes the inter-alpha-trypsin inhibitor gene cluster that is involved with embryo implantation. CONCLUSIONS: Our results highlight the value of high-density SNP genotyping for providing new insights on where genes causing inbreeding depression are located in the genome. Genomic measures of inbreeding obtained on a SNP-by-SNP basis or those based on the presence/absence of runs of homozygosity represent a suitable alternative to pedigree-based measures to detect inbreeding depression, and a useful tool for mapping studies. To our knowledge, this is the first study in domesticated animals using the SNP-by-SNP inbreeding coefficient to map specific regions within chromosomes associated with inbreeding depression.


Assuntos
Aptidão Genética , Endogamia , Reprodução/genética , Sus scrofa/genética , Animais , Feminino , Estudo de Associação Genômica Ampla , Homozigoto , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Suínos
18.
BMC Genomics ; 15: 59, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24450868

RESUMO

BACKGROUND: Prion diseases are characterized by the accumulation of the pathogenic PrPSc protein, mainly in the brain and the lymphoreticular system. Although prions multiply/accumulate in the lymph nodes without any detectable pathology, transcriptional changes in this tissue may reflect biological processes that contribute to the molecular pathogenesis of prion diseases. Little is known about the molecular processes that occur in the lymphoreticular system in early and late stages of prion disease. We performed a microarray-based study to identify genes that are differentially expressed at different disease stages in the mesenteric lymph node of sheep naturally infected with scrapie. Oligo DNA microarrays were used to identify gene-expression profiles in the early/middle (preclinical) and late (clinical) stages of the disease. RESULTS: In the clinical stage of the disease, we detected 105 genes that were differentially expressed (≥2-fold change in expression). Of these, 43 were upregulated and 62 downregulated as compared with age-matched negative controls. Fewer genes (50) were differentially expressed in the preclinical stage of the disease. Gene Ontology enrichment analysis revealed that the differentially expressed genes were largely associated with the following terms: glycoprotein, extracellular region, disulfide bond, cell cycle and extracellular matrix. Moreover, some of the annotated genes could be grouped into 3 specific signaling pathways: focal adhesion, PPAR signaling and ECM-receptor interaction. We discuss the relationship between the observed gene expression profiles and PrPSc deposition and the potential involvement in the pathogenesis of scrapie of 7 specific differentially expressed genes whose expression levels were confirmed by real time-PCR. CONCLUSIONS: The present findings identify new genes that may be involved in the pathogenesis of natural scrapie infection in the lymphoreticular system, and confirm previous reports describing scrapie-induced alterations in the expression of genes involved in protein misfolding, angiogenesis and the oxidative stress response. Further studies will be necessary to determine the role of these genes in prion replication, dissemination and in the response of the organism to this disease.


Assuntos
Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica , Linfonodos/metabolismo , Scrapie/fisiopatologia , Ovinos/genética , Ovinos/metabolismo , Animais , Análise por Conglomerados , Regulação para Baixo , Adesões Focais/genética , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Príons/genética , Príons/metabolismo , Receptores de Citoadesina/genética , Receptores de Citoadesina/metabolismo , Scrapie/metabolismo , Scrapie/patologia , Regulação para Cima
19.
Genet Sel Evol ; 46: 40, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24962065

RESUMO

BACKGROUND: Estimates of dominance variance in dairy cattle based on pedigree data vary considerably across traits and amount to up to 50% of the total genetic variance for conformation traits and up to 43% for milk production traits. Using bovine SNP (single nucleotide polymorphism) genotypes, dominance variance can be estimated both at the marker level and at the animal level using genomic dominance effect relationship matrices. Yield deviations of high-density genotyped Fleckvieh cows were used to assess cross-validation accuracy of genomic predictions with additive and dominance models. The potential use of dominance variance in planned matings was also investigated. RESULTS: Variance components of nine milk production and conformation traits were estimated with additive and dominance models using yield deviations of 1996 Fleckvieh cows and ranged from 3.3% to 50.5% of the total genetic variance. REML and Gibbs sampling estimates showed good concordance. Although standard errors of estimates of dominance variance were rather large, estimates of dominance variance for milk, fat and protein yields, somatic cell score and milkability were significantly different from 0. Cross-validation accuracy of predicted breeding values was higher with genomic models than with the pedigree model. Inclusion of dominance effects did not increase the accuracy of the predicted breeding and total genetic values. Additive and dominance SNP effects for milk yield and protein yield were estimated with a BLUP (best linear unbiased prediction) model and used to calculate expectations of breeding values and total genetic values for putative offspring. Selection on total genetic value instead of breeding value would result in a larger expected total genetic superiority in progeny, i.e. 14.8% for milk yield and 27.8% for protein yield and reduce the expected additive genetic gain only by 4.5% for milk yield and 2.6% for protein yield. CONCLUSIONS: Estimated dominance variance was substantial for most of the analyzed traits. Due to small dominance effect relationships between cows, predictions of individual dominance deviations were very inaccurate and including dominance in the model did not improve prediction accuracy in the cross-validation study. Exploitation of dominance variance in assortative matings was promising and did not appear to severely compromise additive genetic gain.


Assuntos
Bovinos/classificação , Bovinos/genética , Lactação/genética , Leite/metabolismo , Fenótipo , Alelos , Animais , Cruzamento , Feminino , Frequência do Gene , Loci Gênicos , Genômica , Genótipo , Masculino , Modelos Genéticos , Linhagem , Polimorfismo de Nucleotídeo Único , Seleção Genética
20.
BMC Pulm Med ; 14: 114, 2014 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-25016368

RESUMO

BACKGROUND: Obstructive sleep apnea (OSA) is associated with increased risk for cardiovascular morbidity and mortality. Epidemiological and animal models studies generate hypotheses for innovative strategies in OSA management by interfering intermediates mechanisms associated with cardiovascular complications. We have thus initiated the Epigenetics modification in Obstructive Sleep Apnea (EPIOSA) study (ClinicalTrials.gov identifier: NCT02131610). METHODS/DESIGN: EPIOSA is a prospective cohort study aiming to recruit 350 participants of caucasian ethnicity and free of other chronic or inflammatory diseases: 300 patients with prevalent OSA and 50 non-OSA subjects. All of them will be follow-up for at least 5 years. Recruitment and study visits are performed in single University-based sleep clinic using standard operating procedures. At baseline and at each one year follow-up examination, patients are subjected to a core phenotyping protocol. This includes a standardized questionnaire and physical examination to determine incident comorbidities and health resources utilization, with a primary focus on cardiovascular events. Confirmatory outcomes information is requested from patient records and the regional Department of Health Services. Every year, OSA status will be assessed by full sleep study and blood samples will be obtained for immediate standard biochemistry, hematology, inflammatory cytokines and cytometry analysis. For biobanking, aliquots of serum, plasma, urine, mRNA and DNA are also obtained. Bilateral carotid echography will be performed to assess subclinical atherosclerosis and atherosclerosis progression. OSA patients are treated according with national guidelines. DISCUSSION: EPIOSA will enable the prospective evaluation of inflammatory and epigenetics mechanism involved in cardiovascular complication of treated and non-treated patients with OSA compared with non OSA subjects.


Assuntos
Doenças das Artérias Carótidas/genética , DNA/análise , RNA Mensageiro/análise , Projetos de Pesquisa , Apneia Obstrutiva do Sono/genética , Apneia Obstrutiva do Sono/metabolismo , Adulto , Biomarcadores/análise , Biomarcadores/sangue , Doenças das Artérias Carótidas/diagnóstico por imagem , Metilação de DNA , Epigênese Genética , Expressão Gênica , Humanos , Estudos Longitudinais , MicroRNAs/análise , Pessoa de Meia-Idade , Polissonografia , Estudos Prospectivos , Inquéritos e Questionários , Ultrassonografia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA