Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Cell ; 83(10): 1725-1742.e12, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37084731

RESUMO

Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells. Integrating the SEC data with cysteine-directed activity-based protein profiling identifies changes in protein-protein interactions that are caused by site-specific liganding events, including the stereoselective engagement of cysteines in PSME1 and SF3B1 that disrupt the PA28 proteasome regulatory complex and stabilize a dynamic state of the spliceosome, respectively. Our findings thus show how multidimensional proteomic analysis of focused libraries of electrophilic compounds can expedite the discovery of chemical probes with site-specific functional effects on protein complexes in human cells.


Assuntos
Proteômica , Fatores de Transcrição , Humanos , Proteômica/métodos , Cisteína/metabolismo , Ligantes
2.
J Immunol ; 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39495004

RESUMO

ISG15, an IFN-stimulated gene, plays a crucial role in modulating immune responses during viral infections. Its upregulation is part of the host's defense mechanism against viruses, contributing to the antiviral state of cells. However, altered ISG15 expression can also lead to immune dysregulation and pathological outcomes, particularly during persistent viral infections. Understanding the balance of ISG15 in promoting antiviral immunity while avoiding immune-mediated pathology is essential for developing targeted therapeutic interventions against viral diseases. In this article, using Usp18-deficient, USP18 enzymatic-inactive and Isg15-deficient mouse models, we report that a lack of USP18 enzymatic function during persistent viral infection leads to severe immune pathology characterized by hematological disruptions described by reductions in platelets, total WBCs, and lymphocyte counts; pulmonary cytokine amplification; lung vascular leakage; and death. The lack of Usp18 in myeloid cells mimicked the pathological manifestations observed in Usp18-/- mice and required Isg15. Mechanistically, interrupting the enzymes that conjugate/deconjugate ISG15, using Uba7-/- or Usp18C61A mice, respectively, led to accumulation of ISG15 that was accompanied by inflammatory neutrophil accumulation, lung pathology, and death similar to that observed in Usp18-deficient mice. Moreover, myeloid cell depletion reversed pathological manifestations, morbidity, and mortality in Usp18C61A mice. Our results suggest that dysregulated ISG15 production and signaling during persistent lymphocytic choriomeningitis virus infection can produce lethal immune pathology and could serve as a therapeutic target during severe viral infections with pulmonary pathological manifestations.

3.
Cell Physiol Biochem ; 55(3): 256-264, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33984198

RESUMO

BACKGROUND/AIMS: During an immune response, type I interferon (IFN-I) signaling induces a wide range of changes, including those which are required to overcome viral infection and those which suppress cytotoxic T cells to avoid immunopathology. During certain bacterial infections, IFN-I signaling exerts largely detrimental effects. Although the IFN-I family of proteins all share one common receptor, biologic responses to signaling vary depending on IFN-I subtype. Here, we asked if one IFN-I subtype dominates the pro-bacterial effect of IFN-I signaling and found that control of Listeria monocytogenes (L.m.) infection is more strongly suppressed by IFN-ß than IFN-α. METHODS: To study this, we measured bacterial titers in IFNAR-/-, IFN-ß­/­, Stat2-/-, Usp18fl/fl and Usp18fl/fl x CD11c-Cre mice models in addition to IFN-I blocking antibodies. Moreover, we measured interferon stimulated genes in bone marrow derived dendritic cells after treatment with IFN-α4 and IFN-ß. RESULTS: Specifically, we show that genetic deletion of IFN-ß or antibody-mediated IFN-ß neutralization was sufficient to reduce bacterial titers to levels similar to those observed in mice that completely lack IFN-I signaling (IFNAR-/- mice). However, IFN-α blockade failed to significantly reduce L.m. titers, suggesting that IFN-ß is the dominant IFN-I subtype responsible for the pro-bacterial effect of IFN-I. Mechanistically, when focusing on IFN-I signals to dendritic cells, we found that IFN-ß induces ISGs more robustly than IFN-α, including USP18, the protein we previously identified as driving the pro-bacterial effects of IFN-I. Further, we found that this induction was STAT1/STAT2 heterodimer- or STAT2/STAT2 homodimer-dependent, as STAT2-deficient mice were more resistant to L.m. infection. CONCLUSION: In conclusion, IFN-Β is the principal member of the IFN-I family responsible for driving the pro-bacterial effect of IFN-I.


Assuntos
Interferon-alfa/imunologia , Interferon beta/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Animais , Feminino , Interferon-alfa/genética , Interferon beta/genética , Listeriose/genética , Masculino , Camundongos , Camundongos Knockout , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/imunologia
4.
Nat Chem Biol ; 14(12): 1099-1108, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420694

RESUMO

ABHD12 metabolizes bioactive lysophospholipids, including lysophosphatidylserine (lyso-PS). Deleterious mutations in human ABHD12 cause the neurological disease PHARC, and ABHD12-/- mice display PHARC-like phenotypes, including hearing loss, along with elevated brain lyso-PS and features of stimulated innate immune cell function. Here, we develop a selective and in vivo-active inhibitor of ABHD12 termed DO264 and show that this compound elevates lyso-PS in mouse brain and primary human macrophages. Unlike ABHD12-/- mice, adult mice treated with DO264 exhibited minimal perturbations in auditory function. On the other hand, both DO264-treated and ABHD12-/- mice displayed heightened immunological responses to lymphocytic choriomeningitis virus (LCMV) clone 13 infection that manifested as severe lung pathology with elevated proinflammatory chemokines. These results reveal similarities and differences in the phenotypic impact of pharmacological versus genetic blockade of ABHD12 and point to a key role for this enzyme in regulating immunostimulatory lipid pathways in vivo.


Assuntos
Encéfalo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Coriomeningite Linfocítica/imunologia , Monoacilglicerol Lipases/antagonistas & inibidores , Ureia/análogos & derivados , Ureia/farmacologia , Adulto , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Feminino , Humanos , Coriomeningite Linfocítica/tratamento farmacológico , Coriomeningite Linfocítica/patologia , Lisofosfolipídeos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/imunologia
5.
Immunol Rev ; 272(1): 109-19, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27319346

RESUMO

The recognition of CD1-lipid complexes by T cells was discovered 20 years ago and has since been an emerging and expanding field of investigation. Unlike protein antigens, which are presented on MHC class I and II molecules, lipids can only be presented by CD1 molecules, a unique family of MHC-like proteins whose singularity is a hydrophobic antigen-binding groove. The processing and loading of lipid antigens inside this groove of CD1 molecules require localization to endosomal and lysosomal subcellular compartments and their acidic pHs. This particular environment provides the necessary glycolytic enzymes and lipases that process lipid and glycolipid antigens, as well as a set of lipid transfer proteins that load the final version of the antigen inside the groove of CD1. The overall sequence of events needed for efficient presentation of lipid antigens is now understood and presented in this review. However, a large number of important details have been elusive. This elusiveness is linked to the inherent technical difficulties of studying lipids and the lipid-protein interface in vitro and in vivo. Here, we will expose some of those limitations and describe new approaches to address them during the characterization of lipids and glycolipids antigen presentation.


Assuntos
Antígenos CD1/metabolismo , Antígenos/imunologia , Glicolipídeos/imunologia , Sistema Imunitário , Lipídeos/imunologia , Animais , Apresentação de Antígeno , Proteínas de Transporte/metabolismo , Humanos , Linfócitos T/imunologia
6.
Biotechnol Bioeng ; 112(6): 1102-10, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25689082

RESUMO

Delivery of antigen in particulate form using either synthetic or natural particles induces stronger immunity than soluble forms of the antigen. Among naturally occurring particles, virus-like particles (VLPs) have been genetically engineered to express tumor-associated antigens (TAAs) and have shown to induce strong TAA-specific immune responses due to their nano-particulate size and ability to bind and activate antigen-presenting cells. In this report, we demonstrate that influenza VLPs can be modified by a protein transfer technology to express TAAs for induction of effective antitumor immune responses. We converted the breast cancer HER-2 antigen to a glycosylphosphatidylinositol (GPI)-anchored form and incorporated GPI-HER-2 onto VLPs by a rapid protein transfer process. Expression levels on VLPs depended on the GPI-HER-2 concentration added during protein transfer. Vaccination of mice with protein transferred GPI-HER-2-VLPs induced a strong Th1 and Th2-type anti-HER-2 antibody response and protected mice against a HER-2-expressing tumor challenge. The Soluble form of GPI-HER-2 induced only a weak Th2 response under similar conditions. These results suggest that influenza VLPs can be enriched with TAAs by protein transfer to develop effective VLP-based subunit vaccines against cancer without chemical or genetic modifications and thus preserve the immune stimulating properties of VLPs for easier production of antigen-specific therapeutic cancer vaccines.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Portadores de Fármacos , Neoplasias/prevenção & controle , Orthomyxoviridae/metabolismo , Receptor ErbB-2/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Antineoplásicos/sangue , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Modelos Animais de Doenças , Humanos , Imunidade , Camundongos , Neoplasias/imunologia , Orthomyxoviridae/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética
7.
Nanomedicine ; 11(5): 1097-107, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25752855

RESUMO

Recombinant virus-like nanoparticles (VLPs) are a promising nanoparticle platform to develop safe vaccines for many viruses. Herein, we describe a novel and rapid protein transfer process to enhance the potency of enveloped VLPs by decorating influenza VLPs with exogenously added glycosylphosphatidylinositol-anchored immunostimulatory molecules (GPI-ISMs). With protein transfer, the level of GPI-ISM incorporation onto VLPs is controllable by varying incubation time and concentration of GPI-ISMs added. ISM incorporation was dependent upon the presence of a GPI-anchor and incorporated proteins were stable and functional for at least 4weeks when stored at 4°C. Vaccinating mice with GPI-granulocyte macrophage colony-stimulating factor (GM-CSF)-incorporated-VLPs induced stronger antibody responses and better protection against a heterologous influenza virus challenge than unmodified VLPs. Thus, VLPs can be enriched with ISMs by protein transfer to increase the potency and breadth of the immune response, which has implications in developing effective nanoparticle-based vaccines against a broad spectrum of enveloped viruses. FROM THE CLINICAL EDITOR: The inherent problem with current influenza vaccines is that they do not generate effective cross-protection against heterologous viral strains. In this article, the authors described the development of virus-like nanoparticles (VLPs) as influenza vaccines with enhanced efficacy for cross-protection, due to an easy protein transfer modification process.


Assuntos
Adjuvantes Imunológicos/farmacologia , Glicosilfosfatidilinositóis/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Orthomyxoviridae/imunologia , Vírion/imunologia , Adjuvantes Imunológicos/química , Animais , Anticorpos Antivirais/imunologia , Células CHO , Cricetulus , Feminino , Glicosilfosfatidilinositóis/química , Fator Estimulador de Colônias de Granulócitos e Macrófagos/química , Humanos , Imunidade Celular , Imunidade Humoral , Vacinas contra Influenza/química , Camundongos Endogâmicos BALB C , Nanopartículas/química , Orthomyxoviridae/química , Infecções por Orthomyxoviridae/imunologia , Vacinação , Vírion/química
8.
Sci Rep ; 11(1): 4763, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637779

RESUMO

N-Acetylneuraminic acid is the most abundant sialic acid (SA) in humans and is expressed as the terminal sugar on intestinal mucus glycans. Several pathogenic bacteria harvest and display host SA on their own surfaces to evade Siglec-mediated host immunity. While previous studies have identified bacterial enzymes associated with SA catabolism, no reported methods permit the selective labeling, tracking, and quantitation of SA-presenting microbes within complex multi-microbial systems. We combined metabolic labeling, click chemistry, 16S rRNA gene, and whole-genome sequencing to track and identify SA-presenting microbes from a cultured human fecal microbiome. We isolated a new strain of Escherichia coli that incorporates SA onto its own surface and encodes for the nanT, neuA, and neuS genes necessary for harvesting and presenting SA. Our method is applicable to the identification of SA-presenting bacteria from human, animal, and environmental microbiomes, as well as providing an entry point for the investigation of surface-expressed SA-associated structures.


Assuntos
Bactérias/química , Bactérias/isolamento & purificação , Microbiota , Ácido N-Acetilneuramínico/análise , Bactérias/genética , Bactérias/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Fezes/microbiologia , Genes Bacterianos , Humanos , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo
9.
ACS Cent Sci ; 7(9): 1508-1515, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34584952

RESUMO

Effector T cells comprise the cellular arm of the adaptive immune system and are essential for mounting immune responses against pathogens and cancer. To reach effector status, costimulation through CD28 is required. Here, we report that sialic acid-containing glycans on the surface of both T cells and APCs are alternative ligands of CD28 that compete with binding to its well-documented activatory ligand CD80 on the APC, resulting in attenuated costimulation. Removal of sialic acids enhances antigen-mediated activation of naïve T cells and also increases the revival of effector T cells made hypofunctional or exhausted via chronic viral infection. This occurs through a mechanism that is synergistic with antibody blockade of the inhibitory PD-1 axis. These results reveal a previously unrecognized role of sialic acid ligands in attenuation of CD28-mediated costimulation of T cells.

10.
Hum Vaccin Immunother ; 16(12): 3184-3193, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32530786

RESUMO

Triple-negative breast cancer (TNBC) afflicts women at a younger age than other breast cancers and is associated with a worse clinical outcome. This poor clinical outcome is attributed to a lack of defined targets and patient-to-patient heterogeneity in target antigens and immune responses. To address such heterogeneity, we tested the efficacy of a personalized vaccination approach for the treatment of TNBC using the 4T1 murine TNBC model. We isolated tumor membrane vesicles (TMVs) from homogenized 4T1 tumor tissue and incorporated glycosyl phosphatidylinositol (GPI)-anchored forms of the immunostimulatory B7-1 (CD80) and IL-12 molecules onto these TMVs to make a TMV vaccine. Tumor-bearing mice were then administered with the TMV vaccine either alone or in combination with immune checkpoint inhibitors. We show that TMV-based vaccine immunotherapy in combination with anti-CTLA-4 mAb treatment upregulated immunomodulatory cytokines in the plasma, significantly improved survival, and reduced pulmonary metastasis in mice compared to either therapy alone. The depletion of CD8+ T cells, but not CD4+ T cells, resulted in the loss of efficacy. This suggests that the vaccine acts via tumor-specific CD8+ T cell immunity. These results suggest TMV vaccine immunotherapy as a potential enhancer of immune checkpoint inhibitor therapies for metastatic triple-negative breast cancer.


Assuntos
Vacinas Anticâncer , Neoplasias de Mama Triplo Negativas , Animais , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4 , Linhagem Celular Tumoral , Humanos , Imunoterapia , Interleucina-12 , Camundongos , Neoplasias de Mama Triplo Negativas/terapia
11.
Science ; 369(6506): 993-999, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820126

RESUMO

Stimulator of interferon genes (STING) links innate immunity to biological processes ranging from antitumor immunity to microbiome homeostasis. Mechanistic understanding of the anticancer potential for STING receptor activation is currently limited by metabolic instability of the natural cyclic dinucleotide (CDN) ligands. From a pathway-targeted cell-based screen, we identified a non-nucleotide, small-molecule STING agonist, termed SR-717, that demonstrates broad interspecies and interallelic specificity. A 1.8-angstrom cocrystal structure revealed that SR-717 functions as a direct cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) mimetic that induces the same "closed" conformation of STING. SR-717 displayed antitumor activity; promoted the activation of CD8+ T, natural killer, and dendritic cells in relevant tissues; and facilitated antigen cross-priming. SR-717 also induced the expression of clinically relevant targets, including programmed cell death 1 ligand 1 (PD-L1), in a STING-dependent manner.


Assuntos
Antineoplásicos/farmacologia , Materiais Biomiméticos/farmacologia , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/farmacologia , Animais , Antígeno B7-H1/metabolismo , Materiais Biomiméticos/química , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Cristalografia por Raios X , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Camundongos , Nucleotídeos Cíclicos/química , Conformação Proteica/efeitos dos fármacos
12.
J Exp Med ; 216(8): 1791-1808, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31164392

RESUMO

Chronic infection and cancer are associated with suppressed T cell responses in the presence of cognate antigen. Recent work identified memory-like CXCR5+ TCF1+ CD8+ T cells that sustain T cell responses during persistent infection and proliferate upon anti-PD1 treatment. Approaches to expand these cells are sought. We show that blockade of interferon type 1 (IFN-I) receptor leads to CXCR5+ CD8+ T cell expansion in an IL-27- and STAT1-dependent manner. IFNAR1 blockade promoted accelerated cell division and retention of TCF1 in virus-specific CD8+ T cells. We found that CD8+ T cell-intrinsic IL-27 signaling safeguards the ability of TCF1hi cells to maintain proliferation and avoid terminal differentiation or programmed cell death. Mechanistically, IL-27 endowed rapidly dividing cells with IRF1, a transcription factor that was required for sustained division in a cell-intrinsic manner. These findings reveal that IL-27 opposes IFN-I to uncouple effector differentiation from cell division and suggest that IL-27 signaling could be exploited to augment self-renewing T cells in chronic infections and cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Autorrenovação Celular/imunologia , Interleucinas/metabolismo , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Memória Imunológica , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Interleucinas/genética , Coriomeningite Linfocítica/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Interferon alfa e beta/antagonistas & inibidores , Receptores CXCR5/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transcriptoma
13.
Cell Chem Biol ; 23(10): 1282-1293, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27720586

RESUMO

Transthyretin (TTR) is a tetrameric serum protein associated with multiple systemic amyloid diseases. In these disorders, TTR aggregates in extracellular environments through a mechanism involving rate-limiting dissociation of the tetramer to monomers, which then misfold and aggregate into soluble oligomers and amyloid fibrils that induce toxicity in distal tissues. Using an assay established herein, we show that highly destabilized, aggregation-prone TTR variants are secreted as both native tetramers and non-native conformations that accumulate as high-molecular-weight oligomers. Pharmacologic chaperones that promote endoplasmic reticulum (ER) proteostasis of destabilized TTR variants increase their fraction secreted as a tetramer and reduce extracellular aggregate populations. In contrast, disrupting ER proteostasis reduces the fraction of destabilized TTR secreted as a tetramer and increases extracellular aggregates. These results identify ER proteostasis as a factor that can affect conformational integrity and thus toxic aggregation of secreted amyloidogenic proteins associated with the pathology of protein aggregation diseases.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Retículo Endoplasmático/metabolismo , Pré-Albumina/metabolismo , Proteínas Amiloidogênicas/análise , Estresse do Retículo Endoplasmático , Células HEK293 , Humanos , Pré-Albumina/análise , Agregados Proteicos , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica
14.
Biomaterials ; 74: 231-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26461116

RESUMO

Antigen delivered within particulate materials leads to enhanced antigen-specific immunity compared to soluble administration of antigen. However, current delivery approaches for antigen encapsulated in synthetic particulate materials are limited by the complexity of particle production that affects stability and immunogenicity of the antigen. Herein, we describe a protein delivery system that utilizes plasma membrane vesicles (PMVs) derived from biological materials such as cultured cells or isolated tissues and a simple protein transfer technology. We show that these particulate PMVs can be easily modified within 4 h by a protein transfer process to stably incorporate a glycosylphosphatidylinositol (GPI)-anchored form of the breast cancer antigen HER-2 onto the PMV surface. Immunization of mice with GPI-HER-2-modified-PMVs induced strong HER-2-specific antibody responses and protection from tumor challenge in two different breast cancer models. Further incorporation of the immunostimulatory molecules IL-12 and B7-1 onto the PMVs by protein transfer enhanced tumor protection and induced beneficial Th1 and Th2-type HER-2-specific immune responses. Since protein antigens can be easily converted to GPI-anchored forms, these results demonstrate that isolated plasma membrane vesicles can be modified with desired antigens along with immunostimulatory molecules by protein transfer and used as a vaccine delivery vehicle to elicit potent antigen-specific immunity.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos/química , Glicolipídeos/química , Neoplasias/terapia , Animais , Células CHO , Membrana Celular/química , Cricetinae , Cricetulus , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/patologia
15.
Immunotherapy ; 6(6): 675-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25186600

RESUMO

Evaluation of: Davila ML, Riviere I, Wang X et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6(224), 224ra25 (2014). Recently, chimeric antigen receptor (CAR) T-cell immunotherapy has entered clinical trials in patients with relapsed or refractory B-cell acute lymphoblastic leukemia. 19-28z CAR T cells express a fusion protein comprised of an anti-CD19 mAb fused with CD28 costimulatory and CD3-zeta-chain signaling domains. The current paper demonstrates that administration of 19-28z CAR T cells in patients with relapsed or refractory B-ALL in a Phase I clinical trial has led to 88% of patients undergoing complete remission. Despite the benefits, CAR T-cell therapy is associated with cytokine release syndrome toxicities. The authors demonstrated criteria to diagnose severe cytokine release syndrome (sCRS) and treated sCRS with either high-dose steroids or with tocilizumab, an IL-6 receptor-specific mAb. Although both alleviated sCRS, steroid treatment negated the beneficial effects of CAR T-cell therapy, whereas tocilizumab did not. Taken together, CAR T-cell immunotherapy can be used as a safe and effective approach against tumors with known tumor-associated antigens.


Assuntos
Transplante de Células , Imunoterapia , Leucemia de Células B/terapia , Linfócitos T/imunologia , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA