Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982751

RESUMO

In this paper, we report the synthesis of ZnO nanoparticles (NPs) by forced solvolysis of Zn(CH3COO)2·2H2O in alcohols with a different number of -OH groups. We study the influence of alcohol type (n-butanol, ethylene glycol and glycerin) on the size, morphology, and properties of the obtained ZnO NPs. The smallest polyhedral ZnO NPs (<30 nm) were obtained in n-butanol, while in ethylene glycol the NPs measured on average 44 nm and were rounded. Polycrystalline particles of 120 nm were obtained in glycerin only after water refluxing. In addition, here, we report the photocatalytic activity, against a dye mixture, of three model pollutants: methyl orange (MO), methylene blue (MB), and rhodamine B (RhB), a model closer to real situations where water is polluted with many chemicals. All samples exhibited good photocatalytic activity against the dye mixture, with degradation efficiency reaching 99.99%. The sample with smallest nanoparticles maintained a high efficiency >90%, over five catalytic cycles. Antibacterial tests were conducted against Gram-negative strains Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, and Escherichia coli, and Gram-positive strains Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, and Bacillus cereus. The ZnO samples presented strong inhibition of planktonic growth for all tested strains, indicating that they can be used for antibacterial applications, such as water purification.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Nanopartículas Metálicas/química , Azul de Metileno/farmacologia , Azul de Metileno/química , 1-Butanol , Glicerol , Antibacterianos/química , Água , Etilenoglicóis
2.
Mar Drugs ; 20(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36354993

RESUMO

Fabrication of three-dimensional (3D) scaffolds using natural biomaterials introduces valuable opportunities in bone tissue reconstruction and regeneration. The current study aimed at the development of paste-like 3D printing inks with an extracellular matrix-inspired formulation based on marine materials: sodium alginate (SA), cuttlebone (CB), and fish gelatin (FG). Macroporous scaffolds with microporous biocomposite filaments were obtained by 3D printing combined with post-printing crosslinking. CB fragments were used for their potential to stimulate biomineralization. Alginate enhanced CB embedding within the polymer matrix as confirmed by scanning electron microscopy (ESEM) and micro-computer tomography (micro-CT) and improved the deformation under controlled compression as revealed by micro-CT. SA addition resulted in a modulation of the bulk and surface mechanical behavior, and lead to more elongated cell morphology as imaged by confocal microscopy and ESEM after the adhesion of MC3T3-E1 preosteoblasts at 48 h. Formation of a new mineral phase was detected on the scaffold's surface after cell cultures. All the results were correlated with the scaffolds' compositions. Overall, the study reveals the potential of the marine materials-containing inks to deliver 3D scaffolds with potential for bone regeneration applications.


Assuntos
Alginatos , Gelatina , Animais , Gelatina/farmacologia , Alginatos/farmacologia , Tinta , Alicerces Teciduais , Engenharia Tecidual/métodos , Impressão Tridimensional , Regeneração Óssea
3.
Int J Mol Sci ; 23(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35682664

RESUMO

The synthesis of nanoparticles from noble metals has received high attention from researchers due to their unique properties and their wide range of applications. Silver nanoparticles (AgNPs), in particular, show a remarkable inhibitory effect against microorganisms and viruses. Various methods have been developed to obtain AgNPs, however the stability of such nanostructures over time is still challenging. Researchers attempt to obtain particular shapes and sizes in order to tailor AgNPs properties for specific areas, such as biochemistry, biology, agriculture, electronics, medicine, and industry. The aim of this study was to design AgNPs with improved antimicrobial characteristics and stability. Two different wet chemical routes were considered: synthesis being performed (i) reduction method at room temperatures and (ii) solvothermal method at high temperature. Here, we show that the antimicrobial properties of the obtained AgNPs, are influenced by their synthesis route, which impact on the size and shape of the structures. This work analyses and compares the antimicrobial properties of the obtained AgNPs, based on their structure, sizes and morphologies which are influenced, in turn, not only by the type or quantities of precursors used but also by the temperature of the reaction. Generally, AgNPs obtained by solvothermal, at raised temperature, registered better antimicrobial activity as compared to NPs obtained by reduction method at room temperature.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Antibacterianos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Prata/química , Prata/farmacologia
4.
Photochem Photobiol Sci ; 13(4): 703-16, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24590004

RESUMO

The aim of this research was to develop advanced lipid nanocarriers based on renewable vegetable resources (rice bran oil and raspberry seed oil) that possess self-antioxidative properties, having advantages in terms of minimal side effects and exhibiting the ability to simultaneously co-encapsulate and co-release two active compounds. The focus has been oriented towards developing safe cosmetic formulations with broad-spectrum photoprotection based on these new lipid nanocarriers that contain large amounts of vegetable oils and low concentrations of synthetic UVA and UVB filters (butyl-methoxydibenzoylmethane - BMDBM and octocrylene - OCT). The lipid nanocarriers have a spherical shape and show good physical stability, with a zeta potential in the range of -25.5 to -32.4 mV. Both vegetable oils play a key role in the preparation of efficient nanocarriers, leading to a less ordered arrangement of the lipid core that offers many spaces for the entrapment of large amounts of BMDBM (79%) and OCT (90%), as wells as improved antioxidant activity and UV absorption properties, particularly for the lipid nanocarriers prepared from rice bran oil. By formulating the lipid nanocarriers into creams containing only 3.5% of the UV filters and 10.5% of the vegetable oils, the resulting sunscreens exhibited improved photoprotection, reflecting up to 91% and 93% of UVA and UVB rays, respectively. A new direction of research achieved by this study is the multiple release strategy of both UV filters from the same lipid nanocarrier. After 24 hours, a slow release of BMDBM (less than 4%) and OCT (17.5%) was obtained through a Fick diffusion process. This study demonstrates a significant advance in the areas of both nanotechnology and cosmetics, developing safer cosmetic formulations that possess broad antioxidant, photoprotective and co-release effectiveness due to the existence of a high content of nanostructured vegetable oils combined with a low amount of synthetic UV filters in the same carrier system.


Assuntos
Frutas/química , Nanocápsulas/química , Oryza/química , Óleos de Plantas/química , Sementes/química , Protetores Solares/química , Absorção de Radiação , Acrilatos/química , Alcanos/química , Antioxidantes/química , Chalconas/química , Química Farmacêutica , Cosméticos/química , Cristalização , Difusão , Estabilidade de Medicamentos , Cinética , Lipídeos/química , Tamanho da Partícula , Processos Fotoquímicos , Propiofenonas , Raios Ultravioleta
5.
Molecules ; 19(4): 5013-27, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24759068

RESUMO

This paper reports the synthesis and characterization of amoxicillin- functionalized magnetite nanostructures (Fe3O4@AMO), revealing and discussing several biomedical applications of these nanomaterials. Our results proved that 10 nm Fe3O4@AMO nanoparticles does not alter the normal cell cycle progression of cultured diploid cells, and an in vivo murine model confirms that the nanostructures disperse through the host body and tend to localize in particular sites and organs. The nanoparticles were found clustered especially in the lungs, kidneys and spleen, next to the blood vessels at this level, while being totally absent in the brain and liver, suggesting that they are circulated through the blood flow and have low toxicity. Fe3O4@AMO has the ability to be easily circulated through the body and optimizations may be done so these nanostructures cluster to a specific target region. Functionalized magnetite nanostructures proved a great antimicrobial effect, being active against both the Gram positive pathogen S. aureus and the Gram negative pathogen E. coli. The fabricated nanostructures significantly reduced the minimum inhibitory concentration (MIC) of the active drug. This result has a great practical relevance, since the functionalized nanostructures may be used for decreasing the therapeutic doses which usually manifest great severe side effects, when administrated in high doses. Fe3O4@AMO represents also a suitable approach for the development of new alternative strategies for improving the activity of therapeutic agents by targeted delivery and controlled release.


Assuntos
Amoxicilina/farmacologia , Antibacterianos/farmacologia , Óxido Ferroso-Férrico/química , Óxido Ferroso-Férrico/farmacologia , Nanopartículas de Magnetita/química , Amoxicilina/química , Amoxicilina/farmacocinética , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Portadores de Fármacos , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Óxido Ferroso-Férrico/farmacocinética , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Nanopartículas de Magnetita/toxicidade , Camundongos , Tamanho da Partícula , Baço/efeitos dos fármacos , Baço/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
6.
Molecules ; 19(8): 12011-30, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25120054

RESUMO

Novel derivatives were prepared by reaction of aromatic amines with 2-(4-ethylphenoxymethyl)benzoyl isothiocyanate, affording the N-[2-(4-ethylphenoxymethyl) benzoyl]-Nꞌ-(substituted phenyl)thiourea. Structural elucidation of these compounds was performed by IR, NMR spectroscopy and elemental analysis. The new compounds were used in combination with Fe3O4 and polyvinylpyrrolidone (PVP) for the coating of medical surfaces. In our experiments, catheter pieces were coated by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The microbial adherence ability was investigated in 6 multi-well plates by using culture based methods. The obtained surfaces were also assessed for their cytotoxicity with respect to osteoblast cells, by using fluorescence microscopy and MTT assay. The prepared surfaces by advanced laser processing inhibited the adherence and biofilm development ability of Staphylococcus aureus and Pseudomonas aeruginosa tested strains while cytotoxic effects on the 3T3-E1 preosteoblasts embedded in layer shaped alginate hydrogels were not observed. These results suggest that the obtained medical surfaces, based on the novel thiourea derivatives and magnetic nanoparticles with a polymeric shell could represent a promising alternative for the development of new and effective anti-infective strategies.


Assuntos
Antibacterianos/química , Benzamidas/química , Biofilmes/efeitos dos fármacos , Compostos de Ferro/química , Polivinil/química , Pirrolidinas/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Benzamidas/síntese química , Benzamidas/farmacologia , Biofilmes/crescimento & desenvolvimento , Humanos , Compostos de Ferro/farmacologia , Espectroscopia de Ressonância Magnética , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Polivinil/síntese química , Polivinil/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pirrolidinas/síntese química , Pirrolidinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
7.
Materials (Basel) ; 17(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611986

RESUMO

Development of efficient controlled local release of drugs that prevent systemic side effects is a challenge for anti-osteoporotic treatments. Research for new bone-regeneration materials is of high importance. Strontium (Sr) is known as an anti-resorptive and anabolic agent useful in treating osteoporosis. In this study, we compared two different types of synthesis used for obtaining nano hydroxyapatite (HA) and Sr-containing nano hydroxyapatite (SrHA) for bone tissue engineering. Synthesis of HA and SrHA was performed using co-precipitation and hydrothermal methods. Regardless of the synthesis route for the SrHA, the intended content of Sr was 1, 5, 10, 20, and 30 molar %. The chemical, morphological, and biocompatibility properties of HA and SrHA were investigated. Based on our results, it was shown that HA and SrHA exhibited low cytotoxicity and demonstrated toxic behavior only at higher Sr concentrations.

8.
Plants (Basel) ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611526

RESUMO

Hyssop (Hyssopus officinalis L.) and oregano (Origanum vulgare L.), traditionally used for their antimicrobial properties, can be considered viable candidates for nanotechnology applications, in particular for the phytosynthesis of metal nanoparticles. The present work aims to evaluate the potential application of hyssop and oregano for the phytosynthesis of silver nanoparticles, as well as to evaluate the biological activities of their extracts and obtained nanoparticles (antioxidant potential, as well as cell viability, inflammation level and cytotoxicity in human fibroblasts HFIB-G cell line studies). In order to obtain natural extracts, two extraction methods were applied (classical temperature extraction and microwave-assisted extraction), with the extraction method having a major influence on their composition, as demonstrated by both the total phenolic compounds (significantly higher for the microwave-assisted extraction; the oregano extracts had consistently higher TPC values, compared with the hyssop extracts) and in terms of individual components identified via HPLC. The obtained nanoparticles ware characterized via X-ray diffraction (XRD) and transmission electron microscopy (TEM), with the lowest dimension nanoparticles being recorded for the nanoparticles obtained using the oregano microwave extract (crystallite size 2.94 nm through XRD, average diameter 10 nm via TEM). The extract composition and particle size also influenced the antioxidant properties (over 60% DPPH inhibition being recorded for the NPs obtained using the oregano microwave extract). Cell viability was not affected at the lowest tested concentrations, which can be correlated with the nitric oxide level. Cell membrane integrity was not affected after exposure to classic temperature hyssop extract-NPs, while the other samples led to a significant LDH increase.

9.
Materials (Basel) ; 16(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37374563

RESUMO

BACKGROUND: Advanced Oxidation Processes (AOPs) are the water treatment techniques that are commonly used forthe decomposition of the non-biodegradable organic pollutants. However, some pollutants are electron deficient and thus resistant to attack by reactive oxygen species (e.g., polyhalogenated compounds) but they may be degraded under reductive conditions. Therefore, reductive methods are alternative or supplementary methods to the well-known oxidative degradation ones. METHODS: In this paper, the degradation of 4,4'-isopropylidenebis(2,6-dibromophenol) (TBBPA, tetrabromobisphenol A) using two Fe3O4 magnetic photocatalyst (F1 and F2) is presented. The morphological, structural and surface properties of catalysts were studied. Their catalytic efficiency was evaluated based on reactions under reductive and oxidative conditions. Quantum chemical calculations were used to analyse early steps of degradation mechanism. RESULTS: The studied photocatalytic degradation reactions undergo pseudo-first order kinetics. The photocatalytic reduction process follows the Eley-Rideal mechanism rather than the commonly used Langmuir-Hinshelwood mechanism. CONCLUSIONS: The study confirms that both magnetic photocatalyst are effective and assure reductive degradation of TBBPA.

10.
Materials (Basel) ; 16(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37629839

RESUMO

Tissue engineering requires new materials that can be used to replace damaged bone parts. Since hydroxyapatite, currently widely used, has low mechanical resistance, silicate ceramics can represent an alternative. The aim of this study was to obtain porous ceramics based on diopside (CaMgSi2O6) and akermanite (Ca2MgSi2O7) obtained at low sintering temperatures. The powder synthesized by the sol-gel method was pressed in the presence of a porogenic agent represented by commercial sucrose in order to create the desired porosity. The ceramic bodies obtained after sintering thermal treatment at 1050 °C and 1250 °C, respectively, were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) to determine the chemical composition. The open porosity was situated between 32.5 and 34.6%, and the compressive strength had a maximum value of 11.4 MPa for the samples sintered at 1250 °C in the presence of a 20% wt porogenic agent. A cell viability above 70% and the rapid development of an apatitic phase layer make these materials good candidates for use in hard tissue engineering.

11.
Nanomaterials (Basel) ; 13(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570539

RESUMO

A composite based on calcium sulphate hemihydrate enhanced with Zn- or B-doped hydroxyapatite nanoparticles was fabricated and evaluated for bone graft applications. The investigations of their structural and morphological properties were performed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy techniques. To study the bioactive properties of the obtained composites, soaking tests in simulated body fluid (SBF) were performed. The results showed that the addition of 2% Zn results in an increase of 2.27% in crystallinity, while the addition of boron causes an increase of 5.61% compared to the undoped HAp sample. The crystallite size was found to be 10.69 ± 1.59 nm for HAp@B, and in the case of HAp@Zn, the size reaches 16.63 ± 1.83 nm, compared to HAp, whose crystallite size value was 19.44 ± 3.13 nm. The mechanical resistance of the samples doped with zinc was the highest and decreased by about 6% after immersion in SBF. Mixing HAp nanoparticles with gypsum improved cell viability compared to HAp for all concentrations (except for 200 µg/mL). Cell density decreased with increasing nanoparticle concentration, compared to gypsum, where the cell density was not significantly affected. The degree of cellular differentiation of osteoblast-type cells was more accentuated in the case of samples treated with G+HAp@B nanoparticles compared to HAp@B. Cell viability in these samples decreased inversely proportionally to the concentration of administered nanoparticles. From the point of view of cell density, this confirmed the quantitative data.

12.
Int J Biol Macromol ; 244: 125324, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37307975

RESUMO

Poly(3-hydroxybutyrate) (PHB) was blended with medium-chain-length PHAs (mcl-PHAs) for improving its flexibility while nanocellulose (NC) was added as a reinforcing agent. Even and odd-chain-length PHAs, having as main component poly(3-hydroxyoctanoate) (PHO) or poly(3-hydroxynonanoate) (PHN) were synthesized and served as PHB modifiers. The effects of PHO and PHN on the morphology, thermal, mechanical and biodegradation behaviors of PHB were different, especially in the presence of NC. The addition of mcl-PHAs decreased the storage modulus (E') of PHB blends by about 40 %. The further addition of NC mitigated this decrease bringing the E' of PHB/PHO/NC close to that of PHB and having a minor effect on the E' of PHB/PHN/NC. The biodegradability of PHB/PHN/NC was higher than that of PHB/PHO/NC, the latter's being close to that of neat PHB after soil burial for four months. The results showed a complex effect of NC, which enhanced the interaction between PHB and mcl-PHAs and decreased the size of PHO/PHN inclusions (1.9 ± 0.8/2.6 ± 0.9 µm) while increasing the accessibility of water and microorganisms during soil burial. The blown film extrusion test showed the ability of mcl-PHA and NC modified PHB to stretch forming uniform tube and supports the application of these biomaterials in the packaging sector.


Assuntos
Nanocompostos , Poli-Hidroxialcanoatos , Ácido 3-Hidroxibutírico , Materiais Biocompatíveis , Poli A , Poliésteres/metabolismo
13.
Pharmaceutics ; 15(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37765184

RESUMO

Magnetite nanoparticles (MNPs) have been intensively studied for biomedical applications, especially as drug delivery systems for the treatment of infections. Additionally, they are characterized by intrinsic antimicrobial properties owing to their capacity to disrupt or penetrate the microbial cell wall and induce cell death. However, the current focus has shifted towards increasing the control of the synthesis reaction to ensure more uniform nanoparticle sizes and shapes. In this context, microfluidics has emerged as a potential candidate method for the controlled synthesis of nanoparticles. Thus, the aim of the present study was to obtain a series of antibiotic-loaded MNPs through a microfluidic device. The structural properties of the nanoparticles were investigated through X-ray diffraction (XRD) and, selected area electron diffraction (SAED), the morphology was evaluated through transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM), the antibiotic loading was assessed through Fourier-transform infrared spectroscopy (FT-IR) and, and thermogravimetry and differential scanning calorimetry (TG-DSC) analyses, and. the release profiles of both antibiotics was determined through UV-Vis spectroscopy. The biocompatibility of the nanoparticles was assessed through the MTT assay on a BJ cell line, while the antimicrobial properties were investigated against the S. aureus, P. aeruginosa, and C. albicans strains. Results proved considerable uniformity of the antibiotic-containing nanoparticles, good biocompatibility, and promising antimicrobial activity. Therefore, this study represents a step forward towards the microfluidic development of highly effective nanostructured systems for antimicrobial therapies.

14.
Materials (Basel) ; 16(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770043

RESUMO

Huge amounts of vegetable waste, mainly resulting from the food industry, need large areas for storage, as they could cause hazardous environmental impact, leading to soil and water pollution or to CO2 emissions during accidental incineration. This work was aimed at recycling certain lignocellulosic waste (walnut shells, kernels of peach, apricot, and olive) to design advanced carbon material precursors (ACMP) to be used for obtaining nano-powders with high applicative potential in pollution abatement. Both waste and ACMP were characterized using proximate and elemental analysis, and by optical microscopy. Complex characterization of raw materials by FTIR, TGA-DTG, and SEM analysis were carried out. The ACMP were synthetized at 600-700 °C by innovative microwave heating technology which offers the advantages of lower energy consumption using 3.3 kW equipment at laboratory level. The ACMP ash < 3% and increased carbon content of 87% enabled the development of an extended pore network depending on degassing conditions during heating. TEM analysis revealed a well-developed porous structure of the synthesized ACMP carbonaceous materials. Due to the presence of oxygen functional groups, ACMPs exhibit adsorption properties highlighted by an iodine index of max. 500 mg/g and surface area BET of 300 m2/g, which make them attractive for removal of environmental pollutants such as dyes having molecule sizes below 2 nm and ions with pore dimensions below 1 nm, widely used industrially and found in underground waters (NO3-) or waste waters (SO42-).

15.
Dalton Trans ; 52(30): 10386-10401, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37401566

RESUMO

Two new families of zinc/cobalt/aluminum-based pigments, with a unique composition, were obtained through the polyol method. The hydrolysis process of a mixture of Co(CH3COO)2, Zn(acac)2 and Al(acac)3 (acac- = acetylacetonate ion) in 1,4-butanediol afforded dark blue gels (wPZnxCo1-xAl), in the presence of a supplementary amount of water, and light green powders (PZnxCo1-xAl), respectively, for the water-free procedure (x = 0, 0.2, 0.4). The calcination of the precursors yielded dark green (wZnxCo1-xAl) and blue (ZnxCo1-xAl) products. XRD measurements and Rietveld refinement indicate the co-existence of three spinel phases, in different proportions: ZnxCo1-xAl2O4, Co3O4 and the defect spinel, γ-Al2.67O4. The Raman scattering and XPS spectra are in agreement with the compositions of the samples. The morphology of wZnxCo1-xAl consists of large and irregular spherical particle aggregates (ca. 5-100 mm). Smaller agglomerates (ca. 1-5 mm) with a unique silkworm cocoon-like hierarchical morphology composed of cobalt aluminate cores covered with flake-like alumina shells are formed for ZnxCo1-xAl. TEM and HR-TEM analyses revealed the formation of crystalline, polyhedral particles of 7-43 nm sizes for wZnxCo1-xAl, while for ZnxCo1-xAl, a duplex-type morphology, with small (7-13 nm) and larger (30-40 nm) particles, was found. BET assessment showed that both series of oxides are mesoporous materials, with different pore structures, with the water-free samples exhibiting the largest surface areas due, most likely, to the high percent of aluminum oxide. A chemical mechanism is proposed to highlight the role of the water amount and the nature of the starting compounds in the hydrolysis reaction products and, further, in the morpho-structural features and composition of the resulting spinel oxides. The CIE L*a*b* and C* colorimetric parameters indicate that the pigments are bright, with a moderate degree of luminosity, presenting an outstanding high blueness.

16.
Gels ; 9(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37102879

RESUMO

Using the microwave-assisted sol-gel method, Zn- and Cu-doped TiO2 nanoparticles with an anatase crystalline structure were prepared. Titanium (IV) butoxide was used as a TiO2 precursor, with parental alcohol as a solvent and ammonia water as a catalyst. Based on the TG/DTA results, the powders were thermally treated at 500 °C. XRD and XRF revealed the presence of a single-phase anatase and dopants in the thermally treated nanoparticles. The surface of the nanoparticles and the oxidation states of the elements were studied using XPS, which confirmed the presence of Ti, O, Zn, and Cu. The photocatalytic activity of the doped TiO2 nanopowders was tested for the degradation of methyl-orange (MO) dye. The results indicate that Cu doping increases the photoactivity of TiO2 in the visible-light range by narrowing the band-gap energy.

17.
Pharmaceutics ; 15(10)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37896230

RESUMO

One major problem with the overuse of antibiotics is that the microorganisms acquire resistance; thus the dose must be increased unsustainably. To overcome this problem, researchers from around the world are actively investigating new types of antimicrobials. Zinc oxide (ZnO) nanoparticles (NPs) have been proven to exhibit strong antimicrobial effects; moreover, the Food and Drugs Administration (FDA) considers ZnO as GRAS (generally recognized as safe). Many essential oils have antimicrobial activity and their components do not generate resistance over time. One of the drawbacks is the high volatility of some components, which diminishes the antimicrobial action as they are eliminated. The combination of ZnO NPs and essential oils can synergistically produce a stronger antimicrobial effect, and some of the volatile compounds can be retained on the nanoparticles' surface, ensuring a better-lasting antimicrobial effect. The samples were characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), and thermal analysis (TG-DSC) coupled with analysis of evolved gases using FTIR. The ZnO NPs, with a size of ~35 nm, exhibited a loading between 1.44% and 15.62%-the lower values were specific for limonene-containing oils (e.g., orange, grapefruit, bergamot, or limette), while high values were obtained from cinnamon, minzol, thyme, citronella, and lavender oils-highlighting differences among non-polar terpenes and alcohol or aldehyde derivatives. The antibacterial assay indicated the existence of a synergic action among components and a high dependency on the percentage of loaded oil. Loaded nanoparticles offer immense potential for the development of materials with specific applications, such as wound dressings or food packaging. These nanoparticles can be utilized in scenarios where burst delivery is desired or when prolonged antibacterial activity is sought.

18.
Materials (Basel) ; 15(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499922

RESUMO

Herein, based on the reviewed literature, the current marketability challenges faced by kesterite CZTS based-solar cells is addressed. A knowledge update about the attempts to reduce the open circuit voltage deficit of kesterite CZTS solar cells will be addressed, with a focus on the impact of Cu/Zn order/disorder and of Se doping. This review also presents the strengths and weaknesses of the most commercially attractive synthesis methods for synthesizing thin kesterite CZTS films for photovoltaic applications.

19.
Colloids Surf B Biointerfaces ; 213: 112423, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35231685

RESUMO

This work pledge to extend the therapeutic windows of hybrid nanoparticulate systems by engineering mannose-decorated hybrid nanoparticles based on poly lactic-co-glycolic acid (PLGA) and vegetable oil for efficient delivery of two lipophilic anti-inflammatory therapeutics (Celecoxib-CL and Indomethacin-IMC) to macrophages. The mannose surface modification of nanoparticles is achieved via O-palmitoyl-mannose spacer during the emulsification and nanoparticles assembly process. The impact of targeting motif on the hydrodynamic features (RH, PdI), stability (ζ-potential), drug encapsulation efficiency (DEE) is thoroughly investigated. Besides, the in vitro biocompatibility (MTT, LDH) and susceptibility of mannose-decorated formulations to macrophage as well their immunomodulatory activity (ELISA) are also evaluated. The monomodal distributed mannose-decorated nanoparticles are in the range of nanometric size (RH < 115 nm) with PdI < 0.20 and good encapsulation efficiency (DEE = 46.15% for CL and 76.20% for IMC). The quantitative investigation of macrophage uptake shows a 2-fold increase in fluorescence (RFU) of cells treated with mannose-decorated formulations as compared to non-decorated ones (p < 0.001) suggesting an enhanced cell uptake respectively improved macrophage targeting while the results of ELISA experiments suggest the potential immunomodulatory properties of the designed mannose-decorated hybrid formulations.


Assuntos
Manose , Nanopartículas , Anti-Inflamatórios/farmacologia , Portadores de Fármacos , Glicóis , Macrófagos , Tamanho da Partícula , Óleos de Plantas
20.
Pharmaceutics ; 14(12)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36559334

RESUMO

Zinc oxide (ZnO) nanomaterials are used in various health-related applications, from antimicrobial textiles to wound dressing composites and from sunscreens to antimicrobial packaging. Purity, surface defects, size, and morphology of the nanoparticles are the main factors that influence the antimicrobial properties. In this study, we are comparing the properties of the ZnO nanoparticles obtained by solvolysis using a series of alcohols: primary from methanol to 1-hexanol, secondary (2-propanol and 2-butanol), and tertiary (tert-butanol). While the synthesis of ZnO nanoparticles is successfully accomplished in all primary alcohols, the use of secondary or tertiary alcohols does not lead to ZnO as final product, underlining the importance of the used solvent. The shape of the obtained nanoparticles depends on the alcohol used, from quasi-spherical to rods, and consequently, different properties are reported, including photocatalytic and antimicrobial activities. In the photocatalytic study, the ZnO obtained in 1-butanol exhibited the best performance against methylene blue (MB) dye solution, attaining a degradation efficiency of 98.24%. The comparative study among a series of usual model dyes revealed that triarylmethane dyes are less susceptible to photo-degradation. The obtained ZnO nanoparticles present a strong antimicrobial activity on a broad range of microorganisms (bacterial and fungal strains), the size and shape being the important factors. This permits further tailoring for use in medical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA