Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Am Coll Cardiol ; 77(8): 1073-1088, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33632482

RESUMO

BACKGROUND: Mitochondrial dysfunction results in an imbalance between energy supply and demand in a failing heart. An innovative therapy that targets the intracellular bioenergetics directly through mitochondria transfer may be necessary. OBJECTIVES: The purpose of this study was to establish a preclinical proof-of-concept that extracellular vesicle (EV)-mediated transfer of autologous mitochondria and their related energy source enhance cardiac function through restoration of myocardial bioenergetics. METHODS: Human-induced pluripotent stem cell-derived cardiomyocytes (iCMs) were employed. iCM-conditioned medium was ultracentrifuged to collect mitochondria-rich EVs (M-EVs). Therapeutic effects of M-EVs were investigated using in vivo murine myocardial infarction (MI) model. RESULTS: Electron microscopy revealed healthy-shaped mitochondria inside M-EVs. Confocal microscopy showed that M-EV-derived mitochondria were transferred into the recipient iCMs and fused with their endogenous mitochondrial networks. Treatment with 1.0 × 108/ml M-EVs significantly restored the intracellular adenosine triphosphate production and improved contractile profiles of hypoxia-injured iCMs as early as 3 h after treatment. In contrast, isolated mitochondria that contained 300× more mitochondrial proteins than 1.0 × 108/ml M-EVs showed no effect after 24 h. M-EVs contained mitochondrial biogenesis-related messenger ribonucleic acids, including proliferator-activated receptor γ coactivator-1α, which on transfer activated mitochondrial biogenesis in the recipient iCMs at 24 h after treatment. Finally, intramyocardial injection of 1.0 × 108 M-EVs demonstrated significantly improved post-MI cardiac function through restoration of bioenergetics and mitochondrial biogenesis. CONCLUSIONS: M-EVs facilitated immediate transfer of their mitochondrial and nonmitochondrial cargos, contributing to improved intracellular energetics in vitro. Intramyocardial injection of M-EVs enhanced post-MI cardiac function in vivo. This therapy can be developed as a novel, precision therapeutic for mitochondria-related diseases including heart failure.


Assuntos
Vesículas Extracelulares/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Mitocôndrias/transplante , Traumatismo por Reperfusão Miocárdica/terapia , Miócitos Cardíacos/transplante , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Metabolismo Energético , Humanos , Camundongos , Contração Miocárdica , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Estudo de Prova de Conceito , Receptores de Estrogênio/metabolismo
2.
JACC CardioOncol ; 3(3): 428-440, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34604804

RESUMO

BACKGROUND: Anthracycline-induced cardiomyopathy (AIC) is a significant source of morbidity and mortality in cancer survivors. The role of mesenchymal stem cells (MSCs) in treating AIC was evaluated in the SENECA trial, a Phase 1 National Heart, Lung, and Blood Institute-sponsored study, but the mechanisms underpinning efficacy in human tissue need clarification. OBJECTIVES: The purpose of this study was to perform an in vitro clinical trial evaluating the efficacy and putative mechanisms of SENECA trial-specific MSCs in treating doxorubicin (DOX) injury, using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iCMs) generated from SENECA patients. METHODS: Patient-specific iCMs were injured with 1 µmol/L DOX for 24 hours, treated with extracellular vesicles (EVs) from MSCs by either coculture or direct incubation and then assessed for viability and markers of improved cellular physiology. MSC-derived EVs were separated into large extracellular vesicles (L-EVs) (>200 nm) and small EVs (<220nm) using a novel filtration system. RESULTS: iCMs cocultured with MSCs in a transwell system demonstrated improved iCM viability and attenuated apoptosis. L-EVs but not small EVs recapitulated this therapeutic effect. L-EVs were found to be enriched in mitochondria, which were shown to be taken up by iCMs. iCMs treated with L-EVs demonstrated improved contractility, reactive oxygen species production, ATP production, and mitochondrial biogenesis. Inhibiting L-EV mitochondrial function with 1-methyl-4-phenylpyridinium attenuated efficacy. CONCLUSIONS: L-EV-mediated mitochondrial transfer mitigates DOX injury in patient-specific iCMs. Although SENECA was not designed to test MSC efficacy, consistent tendencies toward a positive effect were observed across endpoints. Our results suggest a mechanism by which MSCs may improve cardiovascular performance in AIC independent of regeneration, which could inform future trial design evaluating the therapeutic potential of MSCs.

3.
J Am Heart Assoc ; 9(13): e015640, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32538237

RESUMO

Background Exosomes are small extracellular vesicles that function as intercellular messengers and effectors. Exosomal cargo contains regulatory small molecules, including miRNAs, mRNAs, lncRNAs, and small peptides that can be modulated by different pathological stimuli to the cells. One of the main mechanisms of action of drug therapy may be the altered production and/or content of the exosomes. Methods and Results We studied the effects on exosome production and content by neprilysin inhibitor/angiotensin receptor blockers, sacubitril/valsartan and valsartan alone, using human-induced pluripotent stem cell-derived cardiomyocytes under normoxic and hypoxic injury model in vitro, and assessed for physiologic correlation using an ischemic myocardial injury rodent model in vivo. We demonstrated that the treatment with sacubitril/valsartan and valsartan alone resulted in the increased production of exosomes by induced pluripotent stem cell-derived cardiomyocytes in vitro in both conditions as well as in the rat plasma in vivo. Next-generation sequencing of these exosomes exhibited downregulation of the expression of rno-miR-181a in the sacubitril/valsartan treatment group. In vivo studies employing chronic rodent myocardial injury model demonstrated that miR-181a antagomir has a beneficial effect on cardiac function. Subsequently, immunohistochemical and molecular studies suggested that the downregulation of miR-181a resulted in the attenuation of myocardial fibrosis and hypertrophy, restoring the injured rodent heart after myocardial infarction. Conclusions We demonstrate that an additional mechanism of action of the pleiotropic effects of sacubitril/valsartan may be mediated by the modulation of the miRNA expression level in the exosome payload.


Assuntos
Aminobutiratos/farmacologia , Antagonistas de Receptores de Angiotensina/farmacologia , Exossomos/efeitos dos fármacos , MicroRNAs/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Tetrazóis/farmacologia , Animais , Compostos de Bifenilo , Linhagem Celular , Regulação para Baixo , Combinação de Medicamentos , Exossomos/genética , Exossomos/metabolismo , Feminino , Fibrose , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neprilisina/antagonistas & inibidores , Ratos Sprague-Dawley , Valsartana , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
4.
J Am Heart Assoc ; 9(6): e014345, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32131688

RESUMO

Background Induced pluripotent stem cells and their differentiated cardiomyocytes (iCMs) have tremendous potential as patient-specific therapy for ischemic cardiomyopathy following myocardial infarctions, but difficulties in viable transplantation limit clinical translation. Exosomes secreted from iCMs (iCM-Ex) can be robustly collected in vitro and injected in lieu of live iCMs as a cell-free therapy for myocardial infarction. Methods and Results iCM-Ex were precipitated from iCM supernatant and characterized by protein marker expression, nanoparticle tracking analysis, and functionalized nanogold transmission electron microscopy. iCM-Ex were then used in in vitro and in vivo models of ischemic injuries. Cardiac function in vivo was evaluated by left ventricular ejection fraction and myocardial viability measurements by magnetic resonance imaging. Cardioprotective mechanisms were studied by JC-1 (tetraethylbenzimidazolylcarbocyanine iodide) assay, immunohistochemistry, quantitative real-time polymerase chain reaction, transmission electron microscopy, and immunoblotting. iCM-Ex measured ≈140 nm and expressed CD63 and CD9. iCM and iCM-Ex microRNA profiles had significant overlap, indicating that exosomal content was reflective of the parent cell. Mice treated with iCM-Ex demonstrated significant cardiac improvement post-myocardial infarction, with significantly reduced apoptosis and fibrosis. In vitro iCM apoptosis was significantly reduced by hypoxia and exosome biogenesis inhibition and restored by treatment with iCM-Ex or rapamycin. Autophagosome production and autophagy flux was upregulated in iCM-Ex groups in vivo and in vitro. Conclusions iCM-Ex improve post-myocardial infarction cardiac function by regulating autophagy in hypoxic cardiomyoytes, enabling a cell-free, patient-specific therapy for ischemic cardiomyopathy.


Assuntos
Autofagia , Exossomos/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Infarto do Miocárdio/terapia , Miocárdio/ultraestrutura , Miócitos Cardíacos/transplante , Animais , Apoptose , Proteínas Relacionadas à Autofagia/metabolismo , Hipóxia Celular , Linhagem Celular , Modelos Animais de Doenças , Exossomos/metabolismo , Exossomos/ultraestrutura , Feminino , Fibrose , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Camundongos SCID , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Recuperação de Função Fisiológica , Transdução de Sinais , Volume Sistólico , Função Ventricular Esquerda
5.
Sci Rep ; 7(1): 2787, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28584262

RESUMO

MicroRNAs (miRNAs) constitute a class of small noncoding RNAs that plays an important role in the post-transcriptional regulation of gene expression. Much evidence has demonstrated that miRNAs are involved in regulating the human and mouse pluripotency. Nevertheless, to our knowledge, miRNAs in the pluripotent stem cells of one of the most commonly used model organisms - the Rattus norvegicus have not been studied. In the present study, we performed deep sequencing of small RNA molecules in the embryonic fibroblasts, embryonic stem cells, and induced pluripotent stem cells of laboratory rats. Bioinformatics analysis revealed 674 known miRNAs and 394 novel miRNA candidates in all of the samples. Expression of known pluripotency-associated miRNAs, such as the miR-290-295 and miR-183-96-182 clusters as well as members of the miR-200 family, was detected in rat pluripotent stem cells. Analysis of the targets of differentially expressed known and novel miRNAs showed their involvement in the regulation of pluripotency and the reprogramming process in rats. Bioinformatics and systems biology approaches identified potential pathways that are regulated by these miRNAs. This study contributes to our understanding of miRNAs in the regulation of pluripotency and cell reprogramming in the laboratory rat.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Estudo de Associação Genômica Ampla , MicroRNAs/genética , Células-Tronco Pluripotentes/metabolismo , Transcriptoma , Animais , Linhagem Celular , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Células-Tronco Pluripotentes/citologia , Ratos
6.
Stem Cells Dev ; 24(24): 2912-24, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26418521

RESUMO

Rat pluripotent stem cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) as mouse and human ones have a great potential for studying mammalian early development, disease modeling, and evaluation of regenerative medicine approaches. However, data on pluripotency realization and self-renewal maintenance in rat cells are still very limited, and differentiation protocols of rat ESCs (rESCs) and iPSCs to study development and obtain specific cell types for biomedical applications are poorly developed. In this study, the RNA-Seq technique was first used for detailed transcriptome characterization in rat pluripotent cells. The rESC and iPSC transcriptomes demonstrated a high similarity and were significantly different from those in differentiated cells. Additionally, we have shown that reprogramming of rat somatic cells to a pluripotent state was accompanied by X-chromosome reactivation. There were two active X chromosomes in XX rESCs and iPSCs, which is one of the key attributes of the pluripotent state. Differentiation of both rESCs and iPSCs led to X-chromosome inactivation (XCI). The dynamics of XCI in differentiating rat cells was very similar to that in mice. Two types of facultative heterochromatin described in various mammalian species were revealed on the rat inactive X chromosome. To explore XCI dynamics, we established a new monolayer differentiation protocol for rESCs and iPSCs that may be applied to study different biological processes and optimized for directed derivation of specific cell types.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes/metabolismo , Transcriptoma , Inativação do Cromossomo X , Animais , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/citologia , Ratos
7.
PLoS One ; 9(2): e88256, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24505450

RESUMO

In rodent female mammals, there are two forms of X-inactivation - imprinted and random which take place in extraembryonic and embryonic tissues, respectively. The inactive X-chromosome during random X-inactivation was shown to contain two types of facultative heterochromatin that alternate and do not overlap. However, chromatin structure of the inactive X-chromosome during imprinted X-inactivation, especially at early stages, is still not well understood. In this work, we studied chromatin modifications associated with the inactive X-chromosome at different stages of imprinted X-inactivation in a rodent, Microtus levis. It has been found that imprinted X-inactivation in vole occurs in a species-specific manner in two steps. The inactive X-chromosome at early stages of imprinted X-inactivation is characterized by accumulation of H3K9me3, HP1, H4K20me3, and uH2A, resembling to some extent the pattern of repressive chromatin modifications of meiotic sex chromatin. Later, the inactive X-chromosome recruits trimethylated H3K27 and acquires the two types of heterochromatin associated with random X-inactivation.


Assuntos
Arvicolinae/genética , Impressão Genômica/genética , Heterocromatina/genética , Inativação do Cromossomo X/genética , Cromossomo X/genética , Animais , Desenvolvimento Embrionário/genética , Feminino , Histonas/genética , Histonas/metabolismo , Meiose/genética , Cromatina Sexual/genética , Células-Tronco/metabolismo , Trofoblastos/metabolismo , Cromossomo Y/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA