Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(4): e1010496, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35482847

RESUMO

Attachment to the intestinal epithelium is critical to the lifestyle of the ubiquitous parasite Giardia lamblia. The ventrolateral flange is a sheet-like membrane protrusion at the interface between parasites and attached surfaces. This structure has been implicated in attachment, but its role has been poorly defined. Here, we identified a novel actin associated protein with putative WH2-like actin binding domains we named Flangin. Flangin complexes with Giardia actin (GlActin) and is enriched in the ventrolateral flange making it a valuable marker for studying the flanges' role in Giardia biology. Live imaging revealed that the flange grows to around 1 µm in width after cytokinesis, then remains uniform in size during interphase, grows in mitosis, and is resorbed during cytokinesis. A flangin truncation mutant stabilizes the flange and blocks cytokinesis, indicating that flange disassembly is necessary for rapid myosin-independent cytokinesis in Giardia. Rho family GTPases are important regulators of membrane protrusions and GlRac, the sole Rho family GTPase in Giardia, was localized to the flange. Knockdown of Flangin, GlActin, and GlRac result in flange formation defects. This indicates a conserved role for GlRac and GlActin in forming membrane protrusions, despite the absence of canonical actin binding proteins that link Rho GTPase signaling to lamellipodia formation. Flangin-depleted parasites had reduced surface contact and when challenged with fluid shear force in flow chambers they had a reduced ability to remain attached, confirming a role for the flange in attachment. This secondary attachment mechanism complements the microtubule based adhesive ventral disc, a feature that may be particularly important during mitosis when the parental ventral disc disassembles in preparation for cytokinesis. This work supports the emerging view that Giardia's unconventional actin cytoskeleton has an important role in supporting parasite attachment.


Assuntos
Giardia lamblia , Giardíase , Parasitos , Actinas/metabolismo , Animais , Giardia/metabolismo , Giardia lamblia/genética , Giardia lamblia/metabolismo , Giardíase/parasitologia , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
2.
Opt Lett ; 49(13): 3794-3797, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950270

RESUMO

Open-top light-sheet (OTLS) microscopy offers rapid 3D imaging of large optically cleared specimens. This enables nondestructive 3D pathology, which provides key advantages over conventional slide-based histology including comprehensive sampling without tissue sectioning/destruction and visualization of diagnostically important 3D structures. With 3D pathology, clinical specimens are often labeled with small-molecule stains that broadly target nucleic acids and proteins, mimicking conventional hematoxylin and eosin (H&E) dyes. Tight optical sectioning helps to minimize out-of-focus fluorescence for high-contrast imaging in these densely labeled tissues but has been challenging to achieve in OTLS systems due to trade-offs between optical sectioning and field of view. Here we present an OTLS microscope with voice-coil-based axial sweeping to circumvent this trade-off, achieving 2 µm axial resolution over a 750 × 375 µm field of view. We implement our design in a non-orthogonal dual-objective (NODO) architecture, which enables a 10-mm working distance with minimal sensitivity to refractive index mismatches, for high-contrast 3D imaging of clinical specimens.


Assuntos
Imageamento Tridimensional , Imageamento Tridimensional/métodos , Humanos , Microscopia/métodos , Coloração e Rotulagem , Luz
3.
Nature ; 561(7724): 485-491, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30209393

RESUMO

The regular arrangements of ß-strands around a central axis in ß-barrels and of α-helices in coiled coils contrast with the irregular tertiary structures of most globular proteins, and have fascinated structural biologists since they were first discovered. Simple parametric models have been used to design a wide range of α-helical coiled-coil structures, but to date there has been no success with ß-barrels. Here we show that accurate de novo design of ß-barrels requires considerable symmetry-breaking to achieve continuous hydrogen-bond connectivity and eliminate backbone strain. We then build ensembles of ß-barrel backbone models with cavity shapes that match the fluorogenic compound DFHBI, and use a hierarchical grid-based search method to simultaneously optimize the rigid-body placement of DFHBI in these cavities and the identities of the surrounding amino acids to achieve high shape and chemical complementarity. The designs have high structural accuracy and bind and fluorescently activate DFHBI in vitro and in Escherichia coli, yeast and mammalian cells. This de novo design of small-molecule binding activity, using backbones custom-built to bind the ligand, should enable the design of increasingly sophisticated ligand-binding proteins, sensors and catalysts that are not limited by the backbone geometries available in known protein structures.


Assuntos
Compostos de Benzil/química , Fluorescência , Imidazolinas/química , Proteínas/química , Animais , Compostos de Benzil/análise , Células COS , Chlorocebus aethiops , Escherichia coli , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ligação de Hidrogênio , Imidazolinas/análise , Ligantes , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes , Leveduras
4.
Nucleic Acids Res ; 49(14): e82, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34048564

RESUMO

Proper regulation of genome architecture and activity is essential for the development and function of multicellular organisms. Histone modifications, acting in combination, specify these activity states at individual genomic loci. However, the methods used to study these modifications often require either a large number of cells or are limited to targeting one histone mark at a time. Here, we developed a new method called Single Cell Evaluation of Post-TRanslational Epigenetic Encoding (SCEPTRE) that uses Expansion Microscopy (ExM) to visualize and quantify multiple histone modifications at non-repetitive genomic regions in single cells at a spatial resolution of ∼75 nm. Using SCEPTRE, we distinguished multiple histone modifications at a single housekeeping gene, quantified histone modification levels at multiple developmentally-regulated genes in individual cells, and evaluated the relationship between histone modifications and RNA polymerase II loading at individual loci. We find extensive variability in epigenetic states between individual gene loci hidden from current population-averaged measurements. These findings establish SCEPTRE as a new technique for multiplexed detection of combinatorial chromatin states at single genomic loci in single cells.


Assuntos
Cromatina/metabolismo , Genoma Humano/genética , Histonas/metabolismo , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Análise de Célula Única/métodos , Linhagem Celular , Cromatina/genética , Epigênese Genética/genética , Código das Histonas/genética , Humanos , Hibridização in Situ Fluorescente/métodos , Cadeias Leves de Miosina/genética
5.
J Am Soc Nephrol ; 32(11): 2697-2713, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34716239

RESUMO

The effects of healthy aging on the kidney, and how these effects intersect with superimposed diseases, are highly relevant in the context of the population's increasing longevity. Age-associated changes to podocytes, which are terminally differentiated glomerular epithelial cells, adversely affect kidney health. This review discusses the molecular and cellular mechanisms underlying podocyte aging, how these mechanisms might be augmented by disease in the aged kidney, and approaches to mitigate progressive damage to podocytes. Furthermore, we address how biologic pathways such as those associated with cellular growth confound aging in humans and rodents.


Assuntos
Envelhecimento/fisiologia , Podócitos/citologia , Adulto , Idoso , Animais , Autofagia , Restrição Calórica , Ciclo Celular , Forma Celular , Células Cultivadas , Senescência Celular , Dano ao DNA , Feminino , Expressão Gênica , Humanos , Inflamassomos , Glomérulos Renais/citologia , Glomérulos Renais/crescimento & desenvolvimento , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Modelos Animais , Oligopeptídeos/farmacologia , Estresse Oxidativo , Podócitos/metabolismo , Ratos , Morte Celular Regulada , Sirtuínas/metabolismo , Especificidade da Espécie , Adulto Jovem
6.
Proc Natl Acad Sci U S A ; 115(23): 5878-5883, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784824

RESUMO

Nucleation and growth of hydrogen nanobubbles are key initial steps in electrochemical water splitting. These processes remain largely unexplored due to a lack of proper tools to probe the nanobubble's interfacial structure with sufficient spatial and temporal resolution. We report the use of superresolution microscopy to image transient formation and growth of single hydrogen nanobubbles at the electrode/solution interface during electrocatalytic water splitting. We found hydrogen nanobubbles can be generated even at very early stages in water electrolysis, i.e., ∼500 mV before reaching its thermodynamic reduction potential. The ability to image single nanobubbles on an electrode enabled us to observe in real time the process of hydrogen spillover from ultrathin gold nanocatalysts supported on indium-tin oxide.

7.
Chem Rev ; 118(18): 9412-9454, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30221931

RESUMO

The past decade has witnessed an explosion in the use of super-resolution fluorescence microscopy methods in biology and other fields. Single-molecule localization microscopy (SMLM) is one of the most widespread of these methods and owes its success in large part to the ability to control the on-off state of fluorophores through various chemical, photochemical, or binding-unbinding mechanisms. We provide here a comprehensive overview of switchable fluorophores in SMLM including a detailed review of all major classes of SMLM fluorophores, and we also address strategies for labeling specimens, considerations for multichannel and live-cell imaging, potential pitfalls, and areas for future development.


Assuntos
Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/metabolismo , História do Século XX , História do Século XXI , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/história , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Pontos Quânticos/química , Pontos Quânticos/metabolismo , Imagem Individual de Molécula/história
8.
Kidney Int ; 96(3): 597-611, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31200942

RESUMO

Podocytes are differentiated post-mitotic cells that cannot replace themselves after injury. Glomerular parietal epithelial cells are proposed to be podocyte progenitors. To test whether a subset of parietal epithelial cells transdifferentiate to a podocyte fate, dual reporter PEC-rtTA|LC1|tdTomato|Nphs1-FLPo|FRT-EGFP mice, named PEC-PODO, were generated. Doxycycline administration permanently labeled parietal epithelial cells with tdTomato reporter (red), and upon doxycycline removal, the parietal epithelial cells (PECs) cannot label further. Despite the presence or absence of doxycycline, podocytes cannot label with tdTomato, but are constitutively labeled with an enhanced green fluorescent protein (EGFP) reporter (green). Only activation of the Nphs1-FLPo transgene by labeled parietal epithelial cells can generate a yellow color. At day 28 of experimental focal segmental glomerulosclerosis, podocyte density was 20% lower in 20% of glomeruli. At day 56 of experimental focal segmental glomerulosclerosis, podocyte density was 18% lower in 17% of glomeruli. TdTomato+ parietal epithelial cells were restricted to Bowman's capsule in healthy mice. However, by days 28 and 56 of experimental disease, two-thirds of tdTomato+ parietal epithelial cells within glomerular tufts were yellow in color. These cells co-expressed the podocyte markers podocin, nephrin, p57 and VEGF164, but not markers of endothelial (ERG) or mesangial (Perlecan) cells. Expansion microscopy showed primary, secondary and minor processes in tdTomato+EGFP+ cells in glomerular tufts. Thus, our studies provide strong evidence that parietal epithelial cells serve as a source of new podocytes in adult mice.


Assuntos
Transdiferenciação Celular , Células Epiteliais/fisiologia , Glomerulosclerose Segmentar e Focal/patologia , Podócitos/fisiologia , Animais , Modelos Animais de Doenças , Genes Reporter/genética , Glomerulosclerose Segmentar e Focal/terapia , Humanos , Microscopia Intravital , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Proteína Vermelha Fluorescente
9.
Nat Methods ; 13(6): 485-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27064647

RESUMO

Expansion microscopy is a technique in which fluorophores on fixed specimens are linked to a swellable polymer that is physically expanded to enable super-resolution microscopy with ordinary microscopes. We have developed and characterized new methods for linking fluorophores to the polymer that now enable expansion microscopy with conventional fluorescently labeled antibodies and fluorescent proteins. Our methods simplify the procedure and expand the palette of compatible labels, allowing rapid dissemination of the technique.


Assuntos
Anticorpos Monoclonais , Aumento da Imagem/métodos , Proteínas Luminescentes , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Animais , Encéfalo/ultraestrutura , Linhagem Celular , Proteínas Luminescentes/genética , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Coloração e Rotulagem , Transfecção
10.
Biophys J ; 114(8): 1980-1987, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694874

RESUMO

Single-molecule localization microscopy methods for super-resolution fluorescence microscopy such as STORM (stochastic optical reconstruction microscopy) are generally limited to thin three-dimensional (3D) sections (≤600 nm) because of photobleaching of molecules outside the focal plane. Although multiple focal planes may be imaged before photobleaching by focusing progressively deeper within the sample, image quality is compromised in this approach because the total number of measurable localizations is divided between detection planes. Here, we solve this problem on fixed samples by developing an imaging method that we call probe-refresh STORM (prSTORM), which allows bleached fluorophores to be straightforwardly replaced with nonbleached fluorophores. We accomplish this by immunostaining the sample with DNA-conjugated antibodies and then reading out their distribution using fluorescently-labeled DNA-reporter oligonucleotides that can be fully replaced in successive rounds of imaging. We demonstrate that prSTORM can acquire 3D images over extended depths without sacrificing the density of localizations at any given plane. We also show that prSTORM can be adapted to obtain high-quality, 3D multichannel images with extended depth that would be challenging or impossible to achieve using established probe methods.


Assuntos
Corantes Fluorescentes/metabolismo , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Linhagem Celular , Processos Estocásticos
11.
J Am Chem Soc ; 139(8): 2964-2971, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28132499

RESUMO

Here we report the direct observation and quantitative analysis of single redox events on a modified indium-tin oxide (ITO) electrode. The key in the observation of single redox events are the use of a fluorogenic redox species and the nanoconfinement and hindered redox diffusion inside 3-nm-diameter silica nanochannels. A simple electrochemical process was used to grow an ultrathin silica film (∼100 nm) consisting of highly ordered parallel nanochannels exposing the electrode surface from the bottom. The electrode-supported 3-nm-diameter nanochannels temporally trap fluorescent resorufin molecules resulting in hindered molecular diffusion in the vicinity of the electrode surface. Adsorption, desorption, and heterogeneous redox events of individual resorufin molecules can be studied using total-internal reflection fluorescence (TIRF). The rate constants of adsorption and desorption processes of resorufin were characterized from single-molecule analysis to be (1.73 ± 0.08) × 10-4 cm·s-1 and 15.71 ± 0.76 s-1, respectively. The redox events of resorufin to the non-fluorescent dihydroresorufin were investigated by analyzing the change in surface population of single resorufin molecules with applied potential. The scan-rate-dependent molecular counting results (single-molecule fluorescence voltammetry) indicated a surface-controlled electrochemical kinetics of the resorufin reduction on the modified ITO electrode. This study demonstrates the great potential of mesoporous silica as a useful modification scheme for studying single redox events on a variety of transparent substrates such as ITO electrodes and gold or carbon film coated glass electrodes. The ability to electrochemically grow and transfer mesoporous silica films onto other substrates makes them an attractive material for future studies in spatial heterogeneity of electrocatalytic surfaces.


Assuntos
Técnicas Eletroquímicas , Índio/química , Dióxido de Silício/química , Compostos de Estanho/química , Eletrodos , Oxirredução , Tamanho da Partícula , Porosidade , Propriedades de Superfície
12.
Nat Methods ; 9(12): 1181-4, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23103881

RESUMO

Sub-diffraction-limit imaging can be achieved by sequential localization of photoactivatable fluorophores, for which the image resolution depends on the number of photons detected per localization. We report a strategy for fluorophore caging that creates photoactivatable probes with high photon yields. Upon photoactivation, these probes can provide 10(4)-10(6) photons per localization and allow imaging of fixed samples with resolutions of several nanometers. This strategy can be applied to many fluorophores across the visible spectrum.


Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Bacteriófago M13/ultraestrutura , Linhagem Celular , Humanos , Microtúbulos/ultraestrutura , Oxirredução , Processos Fotoquímicos , Fótons
13.
Proc Natl Acad Sci U S A ; 109(35): 13978-83, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22891300

RESUMO

Imaging membranes in live cells with nanometer-scale resolution promises to reveal ultrastructural dynamics of organelles that are essential for cellular functions. In this work, we identified photoswitchable membrane probes and obtained super-resolution fluorescence images of cellular membranes. We demonstrated the photoswitching capabilities of eight commonly used membrane probes, each specific to the plasma membrane, mitochondria, the endoplasmic recticulum (ER) or lysosomes. These small-molecule probes readily label live cells with high probe densities. Using these probes, we achieved dynamic imaging of specific membrane structures in living cells with 30-60 nm spatial resolution at temporal resolutions down to 1-2 s. Moreover, by using spectrally distinguishable probes, we obtained two-color super-resolution images of mitochondria and the ER. We observed previously obscured details of morphological dynamics of mitochondrial fusion/fission and ER remodeling, as well as heterogeneous membrane diffusivity on neuronal processes.


Assuntos
Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Nanoestruturas/ultraestrutura , Organelas/ultraestrutura , Compostos de Boro/química , Carbocianinas/química , Membrana Celular/ultraestrutura , Dendritos/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Hipocampo/citologia , Bicamadas Lipídicas , Lisossomos/ultraestrutura , Microscopia de Fluorescência/instrumentação , Mitocôndrias/ultraestrutura , Neurônios/ultraestrutura , Pseudópodes/ultraestrutura , Processos Estocásticos
14.
Nat Methods ; 8(12): 1027-36, 2011 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22056676

RESUMO

One approach to super-resolution fluorescence imaging uses sequential activation and localization of individual fluorophores to achieve high spatial resolution. Essential to this technique is the choice of fluorescent probes; the properties of the probes, including photons per switching event, on-off duty cycle, photostability and number of switching cycles, largely dictate the quality of super-resolution images. Although many probes have been reported, a systematic characterization of the properties of these probes and their impact on super-resolution image quality has been described in only a few cases. Here we quantitatively characterized the switching properties of 26 organic dyes and directly related these properties to the quality of super-resolution images. This analysis provides guidelines for characterization of super-resolution probes and a resource for selecting probes based on performance. Our evaluation identified several photoswitchable dyes with good to excellent performance in four independent spectral ranges, with which we demonstrated low-cross-talk, four-color super-resolution imaging.


Assuntos
Corantes Fluorescentes/análise , Medições Luminescentes , Imagem Molecular/métodos , Soluções Tampão , Cor , Fluorescência , Luz , Microscopia de Fluorescência , Microtúbulos/metabolismo , Sondas Moleculares/análise , Sondas Moleculares/química , Tamanho da Partícula , Fótons
15.
Nat Protoc ; 19(4): 1122-1148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263522

RESUMO

Recent advances in 3D pathology offer the ability to image orders of magnitude more tissue than conventional pathology methods while also providing a volumetric context that is not achievable with 2D tissue sections, and all without requiring destructive tissue sectioning. Generating high-quality 3D pathology datasets on a consistent basis, however, is not trivial and requires careful attention to a series of details during tissue preparation, imaging and initial data processing, as well as iterative optimization of the entire process. Here, we provide an end-to-end procedure covering all aspects of a 3D pathology workflow (using light-sheet microscopy as an illustrative imaging platform) with sufficient detail to perform well-controlled preclinical and clinical studies. Although 3D pathology is compatible with diverse staining protocols and computationally generated color palettes for visual analysis, this protocol focuses on the use of a fluorescent analog of hematoxylin and eosin, which remains the most common stain used for gold-standard pathological reports. We present our guidelines for a broad range of end users (e.g., biologists, clinical researchers and engineers) in a simple format. The end-to-end workflow requires 3-6 d to complete, bearing in mind that data analysis may take longer.


Assuntos
Imageamento Tridimensional , Microscopia , Imageamento Tridimensional/métodos , Fluxo de Trabalho , Microscopia/métodos , Corantes , Coloração e Rotulagem
16.
J Am Chem Soc ; 135(4): 1197-200, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23311875

RESUMO

We report that the cyanine dye Cy5 and several of its structural relatives are reversibly quenched by the phosphine tris(2-carboxyethyl)phosphine (TCEP). Using Cy5 as a model, we show that the quenching reaction occurs by 1,4-addition of the phosphine to the polymethine bridge of Cy5 to form a covalent adduct. Illumination with UV light dissociates the adduct and returns the dye to the fluorescent state. We demonstrate that TCEP quenching can be used for super-resolution imaging as well as for other applications, such as differentiating between molecules inside and outside the cell.


Assuntos
Carbocianinas/química , Fosfinas/química , Animais , Carbocianinas/farmacocinética , Linhagem Celular , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Fosfinas/farmacocinética , Temperatura
17.
Annu Rev Anal Chem (Palo Alto Calif) ; 16(1): 231-252, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-36854208

RESUMO

In recent years, there has been a revived appreciation for the importance of spatial context and morphological phenotypes for both understanding disease progression and guiding treatment decisions. Compared with conventional 2D histopathology, which is the current gold standard of medical diagnostics, nondestructive 3D pathology offers researchers and clinicians the ability to visualize orders of magnitude more tissue within their natural volumetric context. This has been enabled by rapid advances in tissue-preparation methods, high-throughput 3D microscopy instrumentation, and computational tools for processing these massive feature-rich data sets. Here, we provide a brief overview of many of these technical advances along with remaining challenges to be overcome. We also speculate on the future of 3D pathology as applied in translational investigations, preclinical drug development, and clinical decision-support assays.


Assuntos
Pesquisa Translacional Biomédica , Ciência Translacional Biomédica , Humanos , Microscopia de Fluorescência , Bioensaio , Progressão da Doença
18.
J Phys Chem B ; 127(12): 2701-2707, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36944080

RESUMO

Single-molecule localization microscopy (SMLM) allows super-resolution imaging, mapping, counting, and sizing of biological nanostructures such as cell organelles and extracellular vesicles (EVs), but sizing structures smaller than ∼100 nm can be inaccurate due to single-molecule localization error caused by distortion of the point spread function and limited photon number. Here we demonstrate a method to correct localization error when sizing vesicles and other spherical nanoparticles with SMLM and compare sizing results using two vesicle labeling schemes. We use mean approximation theory to derive a simple equation using full width at half-maximum (FWHM) for correcting particle sizes measured by two-dimensional SMLM, validate the method by sizing streptavidin-coated polystyrene nanobeads with the SMLM technique dSTORM with and without error correction, using transmission electron microscopy (TEM) for comparison, and then apply the method to sizing small seminal EVs. Nanobead sizes measured by dSTORM became increasingly less accurate (larger than TEM values) for beads smaller than 50 nm. The error-correction method reduced the size difference versus TEM from 15% without error correction to 7% with error correction for 40 nm beads, from 44% to 9% for 30 nm beads, and from 66% to 15% for 20 nm beads. Seminal EVs were labeled with a lipophilic membrane dye (MemBright 700) and with an Alexa Fluor 488-anti-CD63 antibody conjugate, and were sized separately using both dyes by dSTORM. Error-corrected exosome diameters were smaller than uncorrected values: 72 nm vs 79 nm mean diameter with membrane dyes; 84 nm vs 97 nm with the antibody-conjugated dyes. The mean error-corrected diameter was 12 nm smaller when using the membrane dye than when using the antibody-conjugated dye likely due to the large size of the antibody. Thus, both the error-correction method and the compact membrane labeling scheme reduce overestimation of vesicle size by SMLM. This error-correction method has a low computational cost as it does not require correction of individual blinking events, and it is compatible with all SMLM techniques (e.g., PALM, STORM, and DNA-PAINT).


Assuntos
Vesículas Extracelulares , Nanopartículas , Imagem Individual de Molécula , Vesículas Extracelulares/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Imagem Individual de Molécula/métodos
19.
bioRxiv ; 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37577615

RESUMO

Recent advances in 3D pathology offer the ability to image orders-of-magnitude more tissue than conventional pathology while providing a volumetric context that is lacking with 2D tissue sections, all without requiring destructive tissue sectioning. Generating high-quality 3D pathology datasets on a consistent basis is non-trivial, requiring careful attention to many details regarding tissue preparation, imaging, and data/image processing in an iterative process. Here we provide an end-to-end protocol covering all aspects of a 3D pathology workflow (using light-sheet microscopy as an illustrative imaging platform) with sufficient detail to perform well-controlled preclinical and clinical studies. While 3D pathology is compatible with diverse staining protocols and computationally generated color palettes for visual analysis, this protocol will focus on a fluorescent analog of hematoxylin and eosin (H&E), which remains the most common stain for gold-standard diagnostic determinations. We present our guidelines for a broad range of end-users (e.g., biologists, clinical researchers, and engineers) in a simple tutorial format.

20.
Aging (Albany NY) ; 15(14): 6658-6689, 2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37487005

RESUMO

The decrease in the podocyte's lifespan and health-span that typify healthy kidney aging cause a decrease in their normal structure, physiology and function. The ability to halt and even reverse these changes becomes clinically relevant when disease is superimposed on an aged kidney. RNA-sequencing of podocytes from middle-aged mice showed an inflammatory phenotype with increases in the NLRP3 inflammasome, signaling for IL2/Stat5, IL6 and TNF, interferon gamma response, allograft rejection and complement, consistent with inflammaging. Furthermore, injury-induced NLRP3 signaling in podocytes was further augmented in aged mice compared to young ones. The NLRP3 inflammasome (NLRP3, Caspase-1, IL1ß IL-18) was also increased in podocytes of middle-aged humans. Higher transcript expression for NLRP3 in human glomeruli was accompanied by reduced podocyte density and increased global glomerulosclerosis and glomerular volume. Pharmacological inhibition of NLRP3 with MCC950, or gene deletion, reduced podocyte senescence and the genes typifying aging in middle-aged mice, which was accompanied by an improved podocyte lifespan and health-span. Moreover, modeling the injury-dependent increase in NLRP3 signaling in human kidney organoids confirmed the anti-senescence effect of MC9950. Finally, NLRP3 also impacted liver aging. Together, these results suggest a critical role for the NLRP3 inflammasome in podocyte and liver aging.


Assuntos
Podócitos , Humanos , Animais , Camundongos , Pessoa de Meia-Idade , Podócitos/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Glomérulos Renais/metabolismo , Envelhecimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA