Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Trends Biochem Sci ; 49(4): 280-282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38233283

RESUMO

Recent advances in cryo-electron microscopy (Cryo-EM) have revolutionized our understanding of the complement C5a/C3a receptors that are crucial in inflammation. A recent report by Yadav et al. has elucidated the activation, ligand binding, selectivity, and signaling bias of these receptors, thereby enhancing structure-guided drug discovery. This paves the way for more effective anti-inflammatory therapies that target these receptors with unprecedented precision.


Assuntos
Anafilatoxinas , Complemento C5a , Anafilatoxinas/química , Anafilatoxinas/metabolismo , Complemento C5a/metabolismo , Complemento C3a/metabolismo , Microscopia Crioeletrônica , Receptores de Complemento/metabolismo
2.
Adv Exp Med Biol ; 3234: 73-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507201

RESUMO

The specific kinetics and thermodynamics of protein-protein interactions underlie the molecular mechanisms of cellular functions; hence the characterization of these interaction parameters is central to the quantitative understanding of physiological and pathological processes. Many methods have been developed to study protein-protein interactions, which differ in various features including the interaction detection principle, the sensitivity, whether the method operates in vivo, in vitro, or in silico, the temperature control, the use of labels, immobilization, the amount of sample required, the number of measurements that can be accomplished simultaneously, or the cost. Bio-Layer Interferometry (BLI) is a label-free biophysical method to measure the kinetics of protein-protein interactions. Label-free interaction assays are a broad family of methods that do not require protein modifications (other than immobilization) or labels such as fusions with fluorescent proteins or transactivating domains or chemical modifications like biotinylation or reaction with radionuclides. Besides BLI, other label-free techniques that are widely used for determining protein-protein interactions include surface plasmon resonance (SPR), thermophoresis, and isothermal titration calorimetry (ITC), among others.


Assuntos
Proteínas , Ressonância de Plasmônio de Superfície , Ligação Proteica , Termodinâmica , Proteínas/química , Interferometria/métodos , Cinética
3.
Adv Exp Med Biol ; 3234: 125-140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507204

RESUMO

X-ray crystallography has for most of the last century been the standard technique to determine the high-resolution structure of biological macromolecules, including multi-subunit protein-protein and protein-nucleic acids as large as the ribosome and viruses. As such, the successful application of X-ray crystallography to many biological problems revolutionized biology and biomedicine by solving the structures of small molecules and vitamins, peptides and proteins, DNA and RNA molecules, and many complexes-affording a detailed knowledge of the structures that clarified biological and chemical mechanisms, conformational changes, interactions, catalysis and the biological processes underlying DNA replication, translation, and protein synthesis. Now reaching well into the first quarter of the twenty-first century, X-ray crystallography shares the structural biology stage with cryo-electron microscopy and other innovative structure determination methods, as relevant and central to our understanding of biological function and structure as ever. In this chapter, we provide an overview of modern X-ray crystallography and how it interfaces with other mainstream structural biology techniques, with an emphasis on macromolecular complexes.


Assuntos
Biologia Molecular , Proteínas , Cristalografia por Raios X , Microscopia Crioeletrônica/métodos , Proteínas/química , Substâncias Macromoleculares/química
4.
Semin Cell Dev Biol ; 85: 98-109, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29221973

RESUMO

The surveillance and pathogen fighting functions of the complement system have evolved to protect mammals from life-threatening infections. In turn, pathogens have developed complex molecular mechanisms to subvert, divert and evade the effector functions of the complement. The study of complement immunoevasion by pathogens sheds light on their infection drivers, knowledge that is essential to implement therapies. At the same time, complement evasion also acts as a discovery ground that reveals important aspects of how complement works under physiological conditions. In recent years, complex interrelationships between infection insults and the onset of autoimmune and complement dysregulation diseases have led to propose that encounters with pathogens can act as triggering factors for disease. The correct management of these diseases involves the recognition of their triggering factors and the development and administration of complement-associated molecular therapies. Even more recently, unsuspected proteins from pathogens have been shown to possess moonlighting functions as virulence factors, raising the possibility that behind the first line of virulence factors there be many more pathogen proteins playing secondary, helping and supporting roles for the pathogen to successfully establish infections. In an era where antibiotics have a progressively reduced effect on the management and control of infectious diseases worldwide, knowledge on the mechanisms of pathogenic invasion and evasion look more necessary and pressing than ever.


Assuntos
Proteínas do Sistema Complemento/imunologia , Interações Hospedeiro-Patógeno/imunologia , Doença , Humanos
5.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681942

RESUMO

Endoglin (Eng, CD105) is a type I membrane glycoprotein that functions in endothelial cells as an auxiliary receptor for transforming growth factor ß (TGF-ß)/bone morphogenetic protein (BMP) family members and as an integrin ligand, modulating the vascular pathophysiology. Besides the membrane-bound endoglin, there is a soluble form of endoglin (sEng) that can be generated by the action of the matrix metalloproteinase (MMP)-14 or -12 on the juxtamembrane region of its ectodomain. High levels of sEng have been reported in patients with preeclampsia, hypercholesterolemia, atherosclerosis and cancer. In addition, sEng is a marker of cardiovascular damage in patients with hypertension and diabetes, plays a pathogenic role in preeclampsia, and inhibits angiogenesis and tumor proliferation, migration, and invasion in cancer. However, the mechanisms of action of sEng have not yet been elucidated, and new tools and experimental approaches are necessary to advance in this field. To this end, we aimed to obtain a fluorescent form of sEng as a new tool for biological imaging. Thus, we cloned the extracellular domain of endoglin in the pEGFP-N1 plasmid to generate a fusion protein with green fluorescent protein (GFP), giving rise to pEGFP-N1/Eng.EC. The recombinant fusion protein was characterized by transient and stable transfections in CHO-K1 cells using fluorescence microscopy, SDS-PAGE, immunodetection, and ELISA techniques. Upon transfection with pEGFP-N1/Eng.EC, fluorescence was readily detected in cells, indicating that the GFP contained in the recombinant protein was properly folded into the cytosol. Furthermore, as evidenced by Western blot analysis, the secreted fusion protein yielded the expected molecular mass and displayed a specific fluorescent signal. The fusion protein was also able to bind to BMP9 and BMP10 in vitro. Therefore, the construct described here could be used as a tool for functional in vitro studies of the extracellular domain of endoglin.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Endoglina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Células CHO , Cricetulus , Endoglina/genética , Proteínas de Fluorescência Verde/genética , Humanos , Proteínas Recombinantes de Fusão/genética
7.
Adv Exp Med Biol ; 896: 15-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165316

RESUMO

Recombinant overexpression of a protein or a protein complex using any specific heterologous host can be an overwhelming challenge. The reasons may range from low yield and poor solubility of a single-subunit enzyme to the wrong stoichiometry or the incomplete assembly of a multiprotein complex. Whatever the reason, overcoming the difficulties will take the researcher into a journey through the seemingly countless options that exist for protein expression. While some choices stand to reason fairly straightforwardly (e.g., using Escherichia coli for the production of bacterial enzymes), most other choices do not need to be so self-revealing. Here, we attempt to portrait the canvas of available hosts for heterologous expression of many different protein classes and complexes and offer guidance as to which expression host may be more suitable to the problem at hand. The guidance in this chapter must be taken only as a rough indication which will have to be checked against the available literature and corroborated by experiment. It is not only expected but also welcome that, as more knowledge is gathered about the performance of hosts and protein types and new expression systems develop, the information in this chapter will have to be updated and refined.


Assuntos
Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Vetores Genéticos , Humanos , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Leveduras/genética , Leveduras/metabolismo
8.
Adv Exp Med Biol ; 896: 115-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165322

RESUMO

Research for multiprotein expression in nonconventional bacterial and archaeal expression systems aims to exploit particular properties of "alternative" prokaryotic hosts that might make them more efficient than E. coli for particular applications, especially in those areas where more conventional bacterial hosts traditionally do not perform well. Currently, a wide range of products with clinical or industrial application have to be isolated from their native source, often microorganisms whose growth present numerous problems owing to very slow growth phenotypes or because they are unculturable under laboratory conditions. In those cases, transfer of the gene pathway responsible for synthesizing the product of interest into a suitable recombinant host becomes an attractive alternative solution. Despite many efforts dedicated to improving E. coli systems due to low cost, ease of use, and its dominant position as a ubiquitous expression host model, many alternative prokaryotic systems have been developed for heterologous protein expression mostly for biotechnological applications. Continuous research has led to improvements in expression yield through these non-conventional models, including Pseudomonas, Streptomyces and Mycobacterium as alternative bacterial expression hosts. Advantageous properties shared by these systems include low costs, high levels of secreted protein products and their safety of use, with non-pathogenic strains been commercialized. In addition, the use of extremophilic and halotolerant archaea as expression hosts has to be considered as a potential tool for the production of mammalian membrane proteins such as GPCRs.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Animais , Archaea/genética , Bactérias/genética , Regulação da Expressão Gênica em Archaea , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Humanos , Complexos Multiproteicos , Mycobacterium/genética , Mycobacterium/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Pseudomonas/genética , Pseudomonas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Streptomyces/genética , Streptomyces/metabolismo , Relação Estrutura-Atividade , Transcrição Gênica
9.
Adv Exp Med Biol ; 896: 137-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165323

RESUMO

Protein complexes can be produced in multimilligram quantities using nonmethylotrophic and methylotrophic yeasts such as Saccharomyces cerevisiae and Komagataella (Pichia) pastoris. Yeasts have distinct advantages as hosts for recombinant protein production owing to their cost efficiency, ease of cultivation and genetic manipulation, fast growth rates, capacity to introduce post-translational modifications, and high protein productivity (yield) of correctly folded protein products. Despite those advantages, yeasts have surprisingly lagged behind other eukaryotic hosts in their use for the production of multisubunit complexes. As our knowledge of the metabolic and genomic bottlenecks that yeast microorganisms face when overexpressing foreign proteins expands, new possibilities emerge for successfully engineering yeasts as superb expression hosts. In this chapter, we describe the current state of the art and discuss future possibilities for the development of yeast-based systems for the production of protein complexes.


Assuntos
Metanol/metabolismo , Pichia/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/metabolismo , Yarrowia/metabolismo , Animais , Regulação Fúngica da Expressão Gênica , Vetores Genéticos , Humanos , Complexos Multiproteicos , Pichia/genética , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Transcrição Gênica , Yarrowia/genética
10.
Adv Exp Med Biol ; 896: 167-84, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165325

RESUMO

Besides the most established expression hosts, several eukaryotic microorganisms and filamentous fungi have also been successfully used as platforms for the production of foreign proteins. Filamentous fungi and Dictyostelium discoideum are two prominent examples. Filamentous fungi, typically Aspergillus and Trichoderma, are usually employed for the industrial production of enzymes and secondary metabolites for food processing, pharmaceutical drugs production, and textile and paper applications, with multiple products already accepted for their commercialization. The low cost of culture medium components, high secretion capability directly to the extracellular medium, and the intrinsic ability to produce post-translational modifications similar to the mammalian type, have promoted this group as successful hosts for the expression of proteins, including examples from phylogenetically distant groups: humans proteins such as IL-2, IL-6 or epithelial growth factor; α-galactosidase from plants; or endoglucanase from Cellulomonas fimi, among others. D. discoideum is a social amoeba that can be used as an expression platform for a variety of proteins, which has been extensively illustrated for cytoskeletal proteins. New vectors for heterologous expression in D. discoideum have been recently developed that might increase the usefulness of this system and expand the range of protein classes that can be tackled. Continuous developments are ongoing to improve strains, promoters, production and downstream processes for filamentous fungi, D. discoideum, and other alternative eukaryotic hosts. Either for the overexpression of individual genes, or in the coexpression of multiples genes, this chapter illustrates the enormous possibilities offered by these groups of eukaryotic organisms.


Assuntos
Dictyostelium/metabolismo , Proteínas Fúngicas/biossíntese , Fungos/metabolismo , Engenharia de Proteínas/métodos , Proteínas de Protozoários/biossíntese , Proteínas Recombinantes/biossíntese , Animais , Dictyostelium/química , Dictyostelium/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fungos/química , Fungos/genética , Regulação Fúngica da Expressão Gênica , Vetores Genéticos , Humanos , Complexos Multiproteicos , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade , Transcrição Gênica
11.
Proc Natl Acad Sci U S A ; 108(32): 13236-40, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21788512

RESUMO

Activation of C3, deposition of C3b on the target surface, and subsequent amplification by formation of a C3-cleaving enzyme (C3-convertase; C3bBb) triggers the effector functions of complement that result in inflammation and cell lysis. Concurrently, surface-bound C3b is proteolyzed to iC3b by factor I and appropriate cofactors. iC3b then interacts with the complement receptors (CR) of the Ig superfamily, CR2 (CD21), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) on leukocytes, down-modulating inflammation, enhancing B cell-mediated immunity, and targeting pathogens for clearance by phagocytosis. Using EM and small-angle X-ray scattering, we now present a medium-resolution structure of iC3b (24 Å). iC3b displays a unique conformation with structural features distinct from any other C3 fragment. The macroglobulin ring in iC3b is similar to that in C3b, whereas the TED (thioester-containing domain) domain and the remnants of the CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain have moved to locations more similar to where they were in native C3. A consequence of this large conformational change is the disruption of the factor B binding site, which renders iC3b unable to assemble a C3-convertase. This structural model also justifies the decreased interaction between iC3b and complement regulators and the recognition of iC3b by the CR of the Ig superfamily, CR2, CR3, and CR4. These data further illustrate the extraordinary conformational versatility of C3 to accommodate a great diversity of functional activities.


Assuntos
Complemento C3b/química , Complemento C3b/ultraestrutura , Microscopia Eletrônica , Complemento C3b/isolamento & purificação , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína , Receptores de Complemento 3b/química , Espalhamento a Baixo Ângulo , Soluções , Difração de Raios X
12.
Biochim Biophys Acta ; 1824(2): 339-49, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22138634

RESUMO

The joint substitution of three active-site residues in Escherichia coli (L)-aspartate aminotransferase increases the ratio of l-cysteine sulfinate desulfinase to transaminase activity 10(5)-fold. This change in reaction specificity results from combining a tyrosine-shift double mutation (Y214Q/R280Y) with a non-conservative substitution of a substrate-binding residue (I33Q). Tyr214 hydrogen bonds with O3 of the cofactor and is close to Arg374 which binds the α-carboxylate group of the substrate; Arg280 interacts with the distal carboxylate group of the substrate; and Ile33 is part of the hydrophobic patch near the entrance to the active site, presumably participating in the domain closure essential for the transamination reaction. In the triple-mutant enzyme, k(cat)' for desulfination of l-cysteine sulfinate increased to 0.5s(-1) (from 0.05s(-1) in wild-type enzyme), whereas k(cat)' for transamination of the same substrate was reduced from 510s(-1) to 0.05s(-1). Similarly, k(cat)' for ß-decarboxylation of l-aspartate increased from<0.0001s(-1) to 0.07s(-1), whereas k(cat)' for transamination was reduced from 530s(-1) to 0.13s(-1). l-Aspartate aminotransferase had thus been converted into an l-cysteine sulfinate desulfinase that catalyzes transamination and l-aspartate ß-decarboxylation as side reactions. The X-ray structures of the engineered l-cysteine sulfinate desulfinase in its pyridoxal-5'-phosphate and pyridoxamine-5'-phosphate form or liganded with a covalent coenzyme-substrate adduct identified the subtle structural changes that suffice for generating desulfinase activity and concomitantly abolishing transaminase activity toward dicarboxylic amino acids. Apparently, the triple mutation impairs the domain closure thus favoring reprotonation of alternative acceptor sites in coenzyme-substrate intermediates by bulk water.


Assuntos
Aspartato Aminotransferases/química , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Domínio Catalítico/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos Dicarboxílicos/metabolismo , Aspartato Aminotransferases/genética , Aspartato Aminotransferases/metabolismo , Biocatálise , Liases de Carbono-Enxofre/metabolismo , Cristalografia por Raios X , Escherichia coli , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Engenharia de Proteínas , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Piridoxamina/análogos & derivados , Piridoxamina/química , Piridoxamina/metabolismo , Especificidade por Substrato
13.
Front Immunol ; 14: 1239146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753090

RESUMO

The complement system plays crucial roles in a wide breadth of immune and inflammatory processes and is frequently cited as an etiological or aggravating factor in many human diseases, from asthma to cancer. Complement receptors encompass at least eight proteins from four structural classes, orchestrating complement-mediated humoral and cellular effector responses and coordinating the complex cross-talk between innate and adaptive immunity. The progressive increase in understanding of the structural features of the main complement factors, activated proteolytic fragments, and their assemblies have spurred a renewed interest in deciphering their receptor complexes. In this review, we describe what is currently known about the structural biology of the complement receptors and their complexes with natural agonists and pharmacological antagonists. We highlight the fundamental concepts and the gray areas where issues and problems have been identified, including current research gaps. We seek to offer guidance into the structural biology of the complement system as structural information underlies fundamental and therapeutic research endeavors. Finally, we also indicate what we believe are potential developments in the field.

14.
Front Immunol ; 14: 1190943, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409124

RESUMO

Leptospirosis is a neglected worldwide zoonosis involving farm animals and domestic pets caused by the Gram-negative spirochete Leptospira interrogans. This bacterium deploys a variety of immune evasive mechanisms, some of them targeted at the complement system of the host's innate immunity. In this work, we have solved the X-ray crystallographic structure of L. interrogans glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to 2.37-Å resolution, a glycolytic enzyme that has been shown to exhibit moonlighting functions that potentiate infectivity and immune evasion in various pathogenic organisms. Besides, we have characterized the enzyme's kinetic parameters toward the cognate substrates and have proven that the two natural products anacardic acid and curcumin are able to inhibit L. interrogans GAPDH at micromolar concentration through a noncompetitive inhibition modality. Furthermore, we have established that L. interrogans GAPDH can interact with the anaphylatoxin C5a of human innate immunity in vitro using bio-layer interferometry and a short-range cross-linking reagent that tethers free thiol groups in protein complexes. To shed light into the interaction between L. interrogans GAPDH and C5a, we have also carried out cross-link guided protein-protein docking. These results suggest that L. interrogans could be placed in the growing list of bacterial pathogens that exploit glycolytic enzymes as extracellular immune evasive factors. Analysis of the docking results indicates a low affinity interaction that is consistent with previous evidence, including known binding modes of other α-helical proteins with GAPDH. These findings allow us to propose L. interrogans GAPDH as a potential immune evasive factor targeting the complement system.


Assuntos
Leptospira interrogans , Leptospirose , Animais , Humanos , Imunidade Inata , Proteínas do Sistema Complemento , Gliceraldeído-3-Fosfato Desidrogenases , Anafilatoxinas
15.
J Thromb Haemost ; 21(7): 1943-1956, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36990159

RESUMO

BACKGROUND: The circulating form of human endoglin (sEng) is a cleavage product of membrane-bound endoglin present on endothelial cells. Because sEng encompasses an RGD motif involved in integrin binding, we hypothesized that sEng would be able to bind integrin αIIbß3, thereby compromising platelet binding to fibrinogen and thrombus stability. METHODS: In vitro human platelet aggregation, thrombus retraction, and secretion-competition assays were performed in the presence of sEng. Surface plasmon resonance (SPR) binding and computational (docking) analyses were carried out to evaluate protein-protein interactions. A transgenic mouse overexpressing human sEng (hsEng+) was used to measure bleeding/rebleeding, prothrombin time (PT), blood stream, and embolus formation after FeCl3-induced injury of the carotid artery. RESULTS: Under flow conditions, supplementation of human whole blood with sEng led to a smaller thrombus size. sEng inhibited platelet aggregation and thrombus retraction, interfering with fibrinogen binding, but did not affect platelet activation. SPR binding studies demonstrated that the specific interaction between αIIbß3 and sEng and molecular modeling showed a good fitting between αIIbß3 and sEng structures involving the endoglin RGD motif, suggesting the possible formation of a highly stable αIIbß3/sEng. hsEng+ mice showed increased bleeding time and number of rebleedings compared to wild-type mice. No differences in PT were denoted between genotypes. After FeCl3 injury, the number of released emboli in hsEng+ mice was higher and the occlusion was slower compared to controls. CONCLUSIONS: Our results demonstrate that sEng interferes with thrombus formation and stabilization, likely via its binding to platelet αIIbß3, suggesting its involvement in primary hemostasis control.


Assuntos
Agregação Plaquetária , Trombose , Humanos , Animais , Camundongos , Agregação Plaquetária/fisiologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Endoglina/metabolismo , Células Endoteliais/metabolismo , Plaquetas/metabolismo , Fibrinogênio/metabolismo
16.
Front Immunol ; 13: 883743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547734

RESUMO

C4b-binding protein (C4BP) is a well-known regulator of the complement system that holds additional and important activities unrelated to complement inhibition. Recently, we have described a novel immunomodulatory activity in the minor C4BP(ß-) isoform directly acting over inflammatory phagocytes. Here we show that incorporation of the ß-chain to the C4BP α-chain oligomer interferes with this immunomodulatory activity of C4BP. Moreover, an oligomeric form including only the complement control protein 6 (CCP6) domain of the C4BP α-chain (PRP6-HO7) is sufficient to "reprogram" monocyte-derived DCs (Mo-DCs) from a pro-inflammatory and immunogenic phenotype to an anti-inflammatory and tolerogenic state. PRP6-HO7 lacks complement regulatory activity but retains full immunomodulatory activity over inflammatory Mo-DCs induced by TLRs, characterized by downregulation of relevant surface markers such as CD83, HLA-DR, co-stimulatory molecules such as CD86, CD80 and CD40, and pro-inflammatory cytokines such as IL-12 and TNF-α. Furthermore, PRP6-HO7-treated Mo-DCs shows increased endocytosis, significantly reduced CCR7 expression and CCL21-mediated chemotaxis, and prevents T cell alloproliferation. Finally, PRP6-HO7 shows also full immunomodulatory activity over Mo-DCs isolated from lupus nephritis patients with active disease, even without further pro-inflammatory stimulation. Therefore PRP6-HO7, retaining the immunomodulatory activity of C4BP(ß-) and lacking its complement regulatory activity, might represent a promising and novel alternative to treat autoimmune diseases.


Assuntos
Proteína de Ligação ao Complemento C4b , Nefrite Lúpica , Proteína de Ligação ao Complemento C4b/metabolismo , Citocinas , Humanos , Imunomodulação , Monócitos/metabolismo
17.
Nat Commun ; 13(1): 1955, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413960

RESUMO

Complement activation on cell surfaces leads to the massive deposition of C3b, iC3b, and C3dg, the main complement opsonins. Recognition of iC3b by complement receptor type 3 (CR3) fosters pathogen opsonophagocytosis by macrophages and the stimulation of adaptive immunity by complement-opsonized antigens. Here, we present the crystallographic structure of the complex between human iC3b and the von Willebrand A inserted domain of the α chain of CR3 (αI). The crystal contains two composite interfaces for CR3 αI, encompassing distinct sets of contiguous macroglobulin (MG) domains on the C3c moiety, MG1-MG2 and MG6-MG7 domains. These composite binding sites define two iC3b-CR3 αI complexes characterized by specific rearrangements of the two semi-independent modules, C3c moiety and TED domain. Furthermore, we show the structure of iC3b in a physiologically-relevant extended conformation. Based on previously available data and novel insights reported herein, we propose an integrative model that reconciles conflicting facts about iC3b structure and function and explains the molecular basis for iC3b selective recognition by CR3 on opsonized surfaces.


Assuntos
Antígeno de Macrófago 1 , Proteínas Opsonizantes , Sítios de Ligação , Antígeno CD11b , Complemento C3b/metabolismo , Proteínas do Sistema Complemento , Humanos , Antígeno de Macrófago 1/metabolismo
18.
BMC Evol Biol ; 11: 273, 2011 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-21943130

RESUMO

BACKGROUND: Bacterial populations are highly successful at colonizing new habitats and adapting to changing environmental conditions, partly due to their capacity to evolve novel virulence and metabolic pathways in response to stress conditions and to shuffle them by horizontal gene transfer (HGT). A common theme in the evolution of new functions consists of gene duplication followed by functional divergence. UlaG, a unique manganese-dependent metallo-ß-lactamase (MBL) enzyme involved in L-ascorbate metabolism by commensal and symbiotic enterobacteria, provides a model for the study of the emergence of new catalytic activities from the modification of an ancient fold. Furthermore, UlaG is the founding member of the so-called UlaG-like (UlaGL) protein family, a recently established and poorly characterized family comprising divalent (and perhaps trivalent) metal-binding MBLs that catalyze transformations on phosphorylated sugars and nucleotides. RESULTS: Here we combined protein structure-guided and sequence-only molecular phylogenetic analyses to dissect the molecular evolution of UlaG and to study its phylogenomic distribution, its relatedness with present-day UlaGL protein sequences and functional conservation. Phylogenetic analyses indicate that UlaGL sequences are present in Bacteria and Archaea, with bona fide orthologs found mainly in mammalian and plant-associated Gram-negative and Gram-positive bacteria. The incongruence between the UlaGL tree and known species trees indicates exchange by HGT and suggests that the UlaGL-encoding genes provided a growth advantage under changing conditions. Our search for more distantly related protein sequences aided by structural homology has uncovered that UlaGL sequences have a common evolutionary origin with present-day RNA processing and metabolizing MBL enzymes widespread in Bacteria, Archaea, and Eukarya. This observation suggests an ancient origin for the UlaGL family within the broader trunk of the MBL superfamily by duplication, neofunctionalization and fixation. CONCLUSIONS: Our results suggest that the forerunner of UlaG was present as an RNA metabolizing enzyme in the last common ancestor, and that the modern descendants of that ancestral gene have a wide phylogenetic distribution and functional roles. We propose that the UlaGL family evolved new metabolic roles among bacterial and possibly archeal phyla in the setting of a close association with metazoans, such as in the mammalian gastrointestinal tract or in animal and plant pathogens, as well as in environmental settings. Accordingly, the major evolutionary forces shaping the UlaGL family include vertical inheritance and lineage-specific duplication and acquisition of novel metabolic functions, followed by HGT and numerous lineage-specific gene loss events.


Assuntos
Bactérias/enzimologia , Bactérias/genética , Hidrolases de Éster Carboxílico/química , Evolução Molecular , Filogenia , Ribonucleases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Archaea/química , Archaea/enzimologia , Archaea/genética , Bactérias/química , Hidrolases de Éster Carboxílico/genética , Genoma Bacteriano , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Ribonucleases/genética , Alinhamento de Sequência , Homologia Estrutural de Proteína
19.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 8): 690-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21795810

RESUMO

The reactive oxygen species hydrogen peroxide is a byproduct of the ß-oxidation process that occurs in peroxisomes. Since reactive oxygen species can cause serious damage to biomolecules, a number of scavengers control their intracellular levels. One such scavenger that is present in the peroxisome is the oxidoreductase catalase. In this study, the crystal structure of heterologously expressed peroxisomal catalase from the thermotolerant yeast Hansenula polymorpha has been determined at 2.9 Šresolution. H. polymorpha catalase is a typical peroxisomal catalase; it is tetrameric and is highly similar to catalases from other organisms. However, its hydrogen peroxide-degrading activity is higher than those of a number of other catalases for which structural data are available. Structural superimpositions indicate that the nature of the major channel, the path for hydrogen peroxide to the active site, varies from those seen in other catalase structures, an observation that may account for the high activity of H. polymorpha catalase.


Assuntos
Catalase/química , Peroxissomos/enzimologia , Pichia/enzimologia , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA