Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 90(16): 9761-9768, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30008222

RESUMO

Environmental transmission electron microscopy was employed to probe transformations in the size, morphology, and composition of individual atmospheric particles as a function of temperature. Two different heating devices were used and calibrated in this work: a furnace heater and a Micro Electro Mechanical System heater. The temperature calibration used sublimation temperatures of NaCl, glucose, and ammonium sulfate particles, and the melting temperature of tin. Volatilization of Suwanee River Fulvic Acid was further used to validate the calibration up to 800 °C. The calibrated furnace holder was used to examine both laboratory-generated secondary organic aerosol particles and field-collected atmospheric particles. Chemical analysis by scanning transmission X-ray microscopy and near-edge fine-structure spectroscopy of the organic particles at different heating steps showed that above 300 °C particle volatilization was accompanied by charring. These methods were then applied to ambient particles collected in the central Amazon region. Distinct categories of particles differed in their volatilization response to heating. Spherical, more-viscous particles lost less volume during heating than particles that spread on the imaging substrate during impaction, due to either being liquid upon impaction or lower viscosity. This methodology illustrates a new analytical approach to accurately measure the volume fraction remaining for individually tracked atmospheric particles at elevated temperatures.

3.
Anal Chem ; 86(5): 2436-42, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24502281

RESUMO

The effects of aerosol particles on heterogeneous atmospheric chemistry and climate are determined in part by the internal arrangement of compounds within the particles. To characterize the morphology of internally mixed aerosol particles in the accumulation mode size regime, we have used cryo-transmission electron microscopy to investigate the phase separation behavior of dry, submicrometer particles composed of ammonium sulfate mixed with carboxylic acids (adipic, azelaic, citric, glutaric, malonic, pimelic, suberic, and succinic acid). Determining the morphology of dry particles is important for understanding laboratory studies of aerosol optical properties, reactivity, and cloud condensation nucleus activity, results from field instruments where aerosol particles are dried prior to analysis, and atmospheric processes like deposition mode heterogeneous ice nucleation that occur on dried particles. We observe homogeneous morphologies for highly soluble organic compounds. For organic compounds with limited aqueous solubility, partially engulfed structures are observed. At intermediate aqueous solubilities, small particles are homogeneous and larger particles are partially engulfed. Results are compared to previous studies of liquid-liquid phase separation in supermicrometer particles and the impact of these dry particle morphologies on aerosol-climate interactions are discussed.

4.
J Phys Chem A ; 118(38): 8787-96, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25211030

RESUMO

Mineral dust aerosol is one of the largest contributors to global ice nuclei, but physical and chemical processing of dust during atmospheric transport can alter its ice nucleation activity. In particular, several recent studies have noted that sulfuric and nitric acids inhibit heterogeneous ice nucleation in the regime below liquid water saturation in aluminosilicate clay minerals. We have exposed kaolinite, KGa-1b and KGa-2, and montmorillonite, STx-1b and SWy-2, to aqueous sulfuric and nitric acid to determine the physical and chemical changes that are responsible for the observed deactivation. To characterize the changes to the samples upon acid treatment, we use X-ray diffraction, transmission electron microscopy, and inductively coupled plasma-atomic emission spectroscopy. We find that the reaction of kaolinite and montmorillonite with aqueous sulfuric acid results in the formation of hydrated aluminum sulfate. In addition, sulfuric and nitric acids induce large structural changes in montmorillonite. We additionally report the supersaturation with respect to ice required for the onset of ice nucleation for these acid-treated species. On the basis of lattice spacing arguments, we explain how the chemical and physical changes observed upon acid treatment could lead to the observed reduction in ice nucleation activity.

5.
J Am Chem Soc ; 135(43): 16046-9, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24125549

RESUMO

The effects of aerosol particles on heterogeneous atmospheric chemistry and climate are determined in part by the internal arrangement of compounds within the particles. We have used cryo-transmission electron microscopy to investigate the phase separation behavior of model organic aerosol composed of ammonium sulfate internally mixed with succinic or pimelic acid. We have found that no particle with a diameter <170 nm for succinic acid and 270 nm for pimelic acid is phase separated. Larger particles adopt a phase separated, partially engulfed structure. We therefore demonstrate that phase separation of aerosol particles is dependent on particle size and discuss implications for aerosol-climate interactions.

6.
Anal Chem ; 84(21): 9101-8, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23043640

RESUMO

It is currently unknown whether mineral dust causes a net warming or cooling effect on the climate system. This uncertainty stems from the varied and evolving shape and composition of mineral dust, which leads to diverse interactions of dust with solar and terrestrial radiation. To investigate these interactions, we have used a cavity ring-down spectrometer to study the optical properties of size-selected calcium carbonate particles, a reactive component of mineral dust. The size selection of nonspherical particles like mineral dust can differ from spherical particles in the polydispersity of the population selected. To calculate the expected extinction cross sections, we use Mie scattering theory for monodisperse spherical particles and for spherical particles with the polydispersity observed in transmission electron microscopy images. Our results for calcium carbonate are compared to the well-studied system of ammonium sulfate. While ammonium sulfate extinction cross sections agree with Mie scattering theory for monodisperse spherical particles, the results for calcium carbonate deviate at large and small particle sizes. We find good agreement for both systems, however, between the calculations performed using the particle images and the cavity ring-down data, indicating that both ammonium sulfate and calcium carbonate can be treated as polydisperse spherical particles. Our results indicate that having an independent measure of polydispersity is essential for understanding the optical properties of nonspherical particles measured with cavity ring-down spectroscopy. Our combined spectroscopy and microscopy techniques demonstrate a novel method by which cavity ring-down spectroscopy can be extended for the study of more complex aerosol particles.

7.
Environ Sci Process Impacts ; 20(11): 1581-1592, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30339168

RESUMO

Fly ash can undergo aging in the atmosphere through interactions with sulfuric acid and water. These reactions could result in chemical and physical changes that could affect the cloud condensation or ice nucleation activity of fly ash particles. To explore this process, different water and acid treated fly ash types were characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), electron dispersive spectroscopy (EDS), selected area diffraction (SAED), and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Then, their immersion freezing activity was assessed. With water and acid treatment, a wide variety of metals were leached, depending on the starting composition of the fly ash. Acid treatment resulted in the formation of gypsum, Ca(SO4)·2H2O, for fly ash containing Ca as well as morphological changes. The immersion freezing activity was also assessed for each fly ash system to compare the effects of water and acid processing. Our results support the assertion that fly ash can serve as a cloud condensation or ice nucleus to affect climate.


Assuntos
Cinza de Carvão/química , Atmosfera/química , Cálcio/análise , Cálcio/química , Sulfato de Cálcio/análise , Sulfato de Cálcio/química , Congelamento , Ferro/análise , Ferro/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Espectrofotometria Atômica , Ácidos Sulfúricos/química , Água/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA