Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Pathog ; 141: 103989, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31982567

RESUMO

Rampant and uncontrolled use of antibiotics is a major concern for aquaculture; the practice foments the emergence of resistant strains of Streptococcus agalactiae, among other negative impacts. Constituents of plant essential oils such as nerolidol are being considered as replacements for synthetic drugs to support fish nutrition and health. There is evidence to suggest that nanotechnology may enhance the efficacy of natural bioactive compounds; this is a substantial advance for the development and sustainability of aquaculture. Against the backdrop of this evidence, we aimed determine whether dietary supplementation with free nerolidol and nerolidol-loaded nanospheres would exert bactericidal effects against S. agalactiae, as well as prevent S. agalactiae-induced brain oxidative damage. In Experiment I, we measured the antimicrobial properties of dietary supplementation of nerolidol and nerolidol nanosphere in terms of mortality, longevity and relative percent survival. Fish infected with S. agalactiae fed 0.5 and 1.0 mL nerolidol nanospheres kg/diet demonstrated lower mortality and higher relative percent survival than the control group, while longevity was higher in all infected plus supplementation groups. Experiment II showed significantly lower microbial loads in brains of fish infected with S. agalactiae that were fed 1.0 mL nerolidol nanospheres kg/diet than in the control group. Brain nerolidol levels were significantly higher in uninfected as well as infected fish supplemented with nerolidol nanospheres than in fish supplemented with free nerolidol. Finally, brain reactive oxygen species and lipid peroxidation levels were higher in infected fish supplemented with basal diet compared to uninfected fish and supplemented with basal diet, and the supplementation with 1.0 mL/kg nerolidol nanospheres prevented this augmentation caused by infection. These data suggest that dietary supplementation with nerolidol nanospheres (1.0 mL/kg diet) has potent bactericidal effects in terms of augmentation of fish longevity and survival, and reduction of brain microbial loads. Also, S. agalactiae-induced brain oxidative damage that contributed to disease pathogenesis, and the dietary supplementation with nerolidol nanospheres (1.0 mL/kg diet) prevented this alteration. In summary, nanotechnology is a compelling approach to enhancing the efficacy of nerolidol, giving rise to reduction of S. agalactiae loads in fish brains.


Assuntos
Ciclídeos , Sesquiterpenos , Streptococcus agalactiae , Animais , Aquicultura , Carga Bacteriana/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/microbiologia , Dieta/veterinária , Suplementos Nutricionais , Composição de Medicamentos/métodos , Doenças dos Peixes/microbiologia , Mortalidade , Nanosferas , Nanotecnologia/métodos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/administração & dosagem , Sesquiterpenos/farmacologia , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/patogenicidade , Taxa de Sobrevida
2.
Naunyn Schmiedebergs Arch Pharmacol ; 393(5): 751-759, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31953674

RESUMO

Nerolidol is a sesquiterpene found in essential oils of several plant species. It is found commonly in human and animal diets and is approved by the US Food and Drug Administration as a flavoring agent. Nevertheless, recent studies have suggested that nerolidol has potent hepatotoxic effects. Because use of plant-based products in human and animal food has expanded considerably, it is essential to develop approaches such as nanotechnology to avoid or reduce hepatic toxic effects. Therefore, the aim of the study was to determine whether nerolidol dietary supplementation elicited hepatic damage associated with impairment of energy homeostasis, as well as whether supplementation with nerolidol-loaded in nanospheres prevented hepatotoxic effects in Nile tilapia (Oreochromis niloticus). Nile tilapia were divided into five groups (A-E, n = 10 per group) with four replicates each, as follows: group A received basal feed (without supplementation); group B received feed containing 0.5 mL free nerolidol/kg; group C received feed containing 1.0 mL free nerolidol/kg; group D received feed containing 0.5 mL nanospheres nerolidol/kg; and group E received feed containing 1.0 mL nanospheres nerolidol/kg. All groups received experimental feed once a day (10% total biomass) at 2 p.m. for 60 consecutive days. Hepatic liver weight and relative liver weight were significantly lower in fish fed 1.0 mL free nerolidol/kg feed than in fish given basal diet (control group). Hepatic pyruvate kinase (1.0 mL free nerolidol/kg) and adenylate kinase (0.5 and 1.0 mL free nerolidol/kg) activities were significantly lower than in the control group, while hepatic reactive oxygen species and lipid damage levels were significantly higher. Finally, the comet assay revealed significant increases in the frequency of damage and the damage index in fish given 0.5 and 1.0 mL free nerolidol/kg in a dose-dependent manner. Nerolidol-loaded in nanospheres prevented all alterations elicited by free nerolidol. Based on these data, we concluded that dietary supplementation with free nerolidol elicited severe impairment of hepatic bioenergetics homeostasis that appeared to be mediated by excessive ROS production and lipid damage, contributing to a genotoxic effect. Dietary supplementation with nerolidol-loaded in nanospheres did not elicit hepatic damage, and therefore, should be considered as a replacement so as to limit toxicity, permitting its continued use as a dietary supplement.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Ciclídeos/metabolismo , Suplementos Nutricionais/toxicidade , Metabolismo Energético/efeitos dos fármacos , Fígado/efeitos dos fármacos , Nanosferas , Sesquiterpenos/toxicidade , Trifosfato de Adenosina/metabolismo , Ração Animal , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dano ao DNA , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Estresse Oxidativo/efeitos dos fármacos
3.
Naunyn Schmiedebergs Arch Pharmacol ; 391(7): 753-759, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29691607

RESUMO

Trypanosoma evansi is a zoonotic parasite associated with high animal mortality that has gained importance due to its capacity to infect humans. Recently, some evidences have demonstrated that T. evansi infection causes severe genotoxic and cytotoxic damage in brain cells, contributing to the pathogenesis and clinical signs of the disease. In this sense, the aim of this study was to evaluate whether nerolidol-loaded in nanospheres, a natural compound with trypanocidal and neuroprotective effects, is able to protect the brain tissue from the cytotoxic and genotoxic effects found during T. evansi infections. Trypanosoma evansi induced brain genotoxic effects through increased damage index (DI) and frequency of damage (FD) when compared to the control group. Moreover, T. evansi induced cytotoxic effects through the reduction of brain cell viability compared to the control group. The metabolites of nitric oxide (NO x ) increased in infected animals compared to the control group. The treatment with nerolidol-loaded in nanospheres prevented the increase on brain DI, FD, and NO x levels, as well as the reduction on cell viability. Based on these evidences, these results confirm that T. evansi induces genotoxic and cytotoxic damage mediated by the upregulation of NO x levels. The most important finding is that nerolidol-loaded in nanospheres was able to prevent DNA damage and cell mortality through the modulation of brain NO x levels. In summary, this treatment can be considered an interesting approach to prevent T. evansi brain damage due its anti-inflammatory property.


Assuntos
Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Sesquiterpenos/uso terapêutico , Tripanossomíase/tratamento farmacológico , Animais , Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Feminino , Camundongos , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico/metabolismo , Sesquiterpenos/farmacologia , Tripanossomíase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA