RESUMO
OBJECTIVE: In this study, we determined whether Helicobacter pylori (H. pylori) infection dampens the efficacy of cancer immunotherapies. DESIGN: Using mouse models, we evaluated whether immune checkpoint inhibitors or vaccine-based immunotherapies are effective in reducing tumour volumes of H. pylori-infected mice. In humans, we evaluated the correlation between H. pylori seropositivity and the efficacy of the programmed cell death protein 1 (PD-1) blockade therapy in patients with non-small-cell lung cancer (NSCLC). RESULTS: In mice engrafted with MC38 colon adenocarcinoma or B16-OVA melanoma cells, the tumour volumes of non-infected mice undergoing anticytotoxic T-lymphocyte-associated protein 4 and/or programmed death ligand 1 or anti-cancer vaccine treatments were significantly smaller than those of infected mice. We observed a decreased number and activation status of tumour-specific CD8+ T cells in the tumours of infected mice treated with cancer immunotherapies independent of the gut microbiome composition. Additionally, by performing an in vitro co-culture assay, we observed that dendritic cells of infected mice promote lower tumour-specific CD8+ T cell proliferation. We performed retrospective human clinical studies in two independent cohorts. In the Dijon cohort, H. pylori seropositivity was found to be associated with a decreased NSCLC patient survival on anti-PD-1 therapy. The survival median for H. pylori seropositive patients was 6.7 months compared with 15.4 months for seronegative patients (p=0.001). Additionally, in the Montreal cohort, H. pylori seropositivity was found to be associated with an apparent decrease of NSCLC patient progression-free survival on anti-PD-1 therapy. CONCLUSION: Our study unveils for the first time that the stomach microbiota affects the response to cancer immunotherapies and that H. pylori serology would be a powerful tool to personalize cancer immunotherapy treatment.
Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Infecções por Helicobacter/complicações , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Adenocarcinoma/microbiologia , Adenocarcinoma/patologia , Animais , Vacinas Anticâncer/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/microbiologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias do Colo/microbiologia , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Feminino , Helicobacter pylori , Humanos , Neoplasias Pulmonares/microbiologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estudos RetrospectivosRESUMO
BACKGROUND: Helicobacter pylori (H. pylori) colonizes the human gastric mucosa with a high worldwide prevalence. Currently, H. pylori is eradicated by the use of antibiotics. However, elevated antibiotic resistance suggests new therapeutic strategies need to be envisioned: one approach being prophylactic vaccination. Pre-clinical and clinical data show that a urease-based vaccine is efficient in decreasing H. pylori infection through the mobilization of T helper (Th) cells, especially Th17 cells. Th17 cells produce interleukins such as IL-22 and IL-17, among others, and are key players in vaccine efficacy. Recently, granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing Th17 cells have been identified. AIM: This study explores the possibility that GM-CSF plays a role in the reduction of H. pylori infection following vaccination. RESULTS: We demonstrate that GM-CSF+ IL-17+ Th17 cells accumulate in the stomach mucosa of H. pylori infected mice during the vaccine-induced reduction of H. pylori infection. Secondly, we provide evidence that vaccinated GM-CSF deficient mice only modestly reduce H. pylori infection. Conversely, we observe that an increase in GM-CSF availability reduces H. pylori burden in chronically infected mice. Thirdly, we show that GM-CSF, by acting on gastric epithelial cells, promotes the production of ßdefensin3, which exhibits H. pylori bactericidal activities. CONCLUSION: Taken together, we demonstrate a key role of GM-CSF, most probably originating from Th17 cells, in the vaccine-induced reduction of H. pylori infection.
Assuntos
Vacinas Bacterianas , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Infecções por Helicobacter , Helicobacter pylori , Animais , Vacinas Bacterianas/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/prevenção & controle , Camundongos , Células Th17 , VacinaçãoRESUMO
Ulcerative colitis (UC) has a prevalence of 1 in 1000 inhabitants in Switzerland. The diagnosis of UC is based on a typical clinical presentation that involves bloody diarrhea, characteristic endoscopic features with continuous inflammation involving the rectum, and compatible histology. UC develops in genetically susceptible individuals with a dysregulated mucosal immune system. This article highlights latest insights into the pathogenesis, diagnosis, and therapy of UC.
La rectocolite ulcéro-hémorragique (RCUH) représente une maladie fréquente en Suisse avec une prévalence de 1 sur 1000 habitants. Le diagnostic se base sur la présentation clinique typique avec des diarrhées sanglantes, une image endoscopique caractéristique avec une inflammation continue qui touche pratiquement toujours le rectum, et une image histologique compatible. La RCUH se développe chez des individus avec prédisposition génétique et une dérégulation du système immunitaire colique. Cet article fait le point sur la pathogenèse, le diagnostic et les approches thérapeutiques de cette maladie.
Assuntos
Colite Ulcerativa , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/terapia , Diarreia , Hemorragia Gastrointestinal/etiologia , Humanos , InflamaçãoRESUMO
The tight control of the innate and adaptive immune responses in the stomach mucosa during chronic Helicobacter pylori infection is of prime importance for the bacteria to persist and for the host to prevent inflammation-driven diseases. This review summarizes recent data on the roles of innate and adaptive immune responses during H. pylori/host interactions. In addition, the latest preclinical developments of H. pylori vaccines are discussed with a special focus on the clinical trial reported by Zeng et al., who provided evidence that oral vaccination significantly reduces the acquisition of natural H. pylori infection in children.
Assuntos
Vacinas Bacterianas/imunologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/prevenção & controle , Helicobacter pylori/imunologia , Inflamação/prevenção & controle , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/isolamento & purificação , Infecções por Helicobacter/patologia , Interações Hospedeiro-Patógeno , Humanos , Inflamação/patologia , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Despite the proven ability of immunization to reduce Helicobacter infection in mouse models, the precise mechanism of protection has remained elusive. In this study, we evaluated the role of inflammatory monocytes in the vaccine-induced reduction of Helicobacter felis infection. We first showed by using flow cytometric analysis that Ly6C(low) major histocompatibility complex class II-positive chemokine receptor type 2 (CCR2)-positive CD64(+) inflammatory monocytes accumulate in the stomach mucosa during the vaccine-induced reduction of H. felis infection. To determine whether inflammatory monocytes played a role in the protection, these cells were depleted with anti-CCR2 depleting antibodies. Indeed, depletion of inflammatory monocytes was associated with an impaired vaccine-induced reduction of H. felis infection on day 5 postinfection. To determine whether inflammatory monocytes had a direct or indirect role, we studied their antimicrobial activities. We observed that inflammatory monocytes produced tumor necrosis factor alpha and inducible nitric oxide synthase (iNOS), two major antimicrobial factors. Lastly, by using a Helicobacter in vitro killing assay, we showed that mouse inflammatory monocytes and activated human monocytes killed H. pylori in an iNOS-dependent manner. Collectively, these data show that inflammatory monocytes play a direct role in the immunization-induced reduction of H. felis infection from the gastric mucosa.
Assuntos
Vacinas Bacterianas/imunologia , Infecções por Helicobacter/imunologia , Helicobacter felis/imunologia , Monócitos/imunologia , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Feminino , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/prevenção & controle , Helicobacter felis/genética , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/microbiologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologiaRESUMO
Inflammatory bowel diseases are commonly complicated by weight and bone loss. We hypothesized that IL-15, a pro-inflammatory cytokine expressed in colitis and an osteoclastogenic factor, could play a central role in systemic and skeletal complications of inflammatory bowel diseases. We evaluated the effects of an IL-15 antagonist, CRB-15, in mice with chronic colitis induced by oral 2% dextran sulfate sodium for 1 week, followed by another 1% for 2 weeks. During the last 2 weeks, mice were treated daily with CRB-15 or an IgG2a control antibody. Intestinal inflammation, disease severity, and bone parameters were evaluated at days 14 and 21. CRB-15 improved survival, early weight loss, and colitis clinical score, although colon damage and inflammation were prevented in only half the survivors. CRB-15 also delayed loss of femur bone mineral density and trabecular microarchitecture. Bone loss was characterized by decreased bone formation, but increased bone marrow osteoclast progenitors and osteoclast numbers on bone surfaces. CRB-15 prevented the suppression of osteoblastic markers of bone formation, and reduced osteoclast progenitors at day 14, but not later. However, by day 21, CRB-15 decreased tumor necrosis factor α and increased IL-10 expression in bone, paralleling a reduction of osteoclasts. These results delineate the role of IL-15 on the systemic and skeletal manifestations of chronic colitis and provide a proof-of-concept for future therapeutic developments.
Assuntos
Colite/prevenção & controle , Interleucina-15/antagonistas & inibidores , Osteoporose/prevenção & controle , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Peso Corporal/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Doença Crônica , Colite/induzido quimicamente , Colite/complicações , Colite/fisiopatologia , Citocinas/metabolismo , Sulfato de Dextrana , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Fêmur/patologia , Fêmur/fisiopatologia , Mediadores da Inflamação/metabolismo , Interleucina-15/farmacologia , Interleucina-15/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteoporose/etiologia , Osteoporose/patologia , Osteoporose/fisiopatologia , Proteínas Recombinantes de Fusão/farmacologia , Índice de Gravidade de Doença , Análise de SobrevidaRESUMO
OBJECTIVE: Macrophages play a critical role in intestinal wound repair. However, the molecular pathways that regulate macrophage wound repair activities remain poorly understood. The aim of this study was to evaluate the role of GM-CSF receptor signaling in the wound repair activities of macrophages. METHODS: Murine macrophages were differentiated from bone marrow cells and human macrophages from monocytes isolated from peripheral blood mononuclear cells of Crohn's disease (CD) patients. In vitro models were used to study the repair activities of macrophages. RESULTS: We provide evidence that GM-CSF receptor signaling is required for murine macrophages to promote epithelial repair. In addition, we demonstrate that the deficient repair properties of macrophages from CD patients with active disease can be recovered via GM-CSF therapy. CONCLUSION: Our data support a critical role of the GM-CSF signaling pathway in the pro-repair activities of mouse and human macrophages.
Assuntos
Células Epiteliais/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Macrófagos/fisiologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Transdução de Sinais , Animais , Células da Medula Óssea/imunologia , Células CACO-2 , Doença de Crohn/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/imunologia , CicatrizaçãoRESUMO
OBJECTIVE: Macrophages play a critical role in wound repair. However, the specific role of the different macrophage subtypes in wound repair remains incompletely understood. The aim of this study was to compare the wound repair activities of undifferentiated macrophages (M0), classically activated macrophages (M1) and alternatively activated (M2) macrophages. METHODS: The macrophage repair activities of intestinal wounds were evaluated using in vitro and in vivo models. RESULTS: All three macrophage subtypes enhanced wound closure in vitro, with the M2 macrophages demonstrating greater repair activities than the M0 and M1 macrophages. Injection of M0 and M2 macrophages into mice with experimental dextran sodium sulfate-induced colitis significantly enhanced ulcer repair when compared to control mice. In contrast, injection of M1 macrophages did not affect ulcer repair. CONCLUSIONS: These results underscore the wound repair capacity of different macrophage subsets. Notably, wound repair activity is not restricted to M2 macrophages, as the current literature suggests.
Assuntos
Ativação de Macrófagos/fisiologia , Macrófagos/citologia , Cicatrização/fisiologia , Animais , Células 3T3 BALB , Diferenciação Celular , Colite/patologia , Modelos Animais de Doenças , Feminino , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
BACKGROUND & AIMS: Protective immunization limits Helicobacter infection of mice by undetermined mechanisms. Protease-activated receptor 2 (PAR2) signaling is believed to regulate immune and inflammatory responses. We investigated the role of PAR2 in vaccine-induced immunity against Helicobacter infection. METHODS: Immune responses against Helicobacter infection were compared between vaccinated PAR2-/- and wild-type (WT) mice. Bacterial persistence, gastric pathology, and inflammatory and cellular responses were assessed using the rapid urease test (RUT), histologic analyses, quantitative polymerase chain reaction, and flow cytometry, respectively. RESULTS: Following vaccination, PAR2-/- mice did not have reductions in Helicobacter felis infection (RUT values were 0.01±0.01 for WT mice and 0.11±0.13 for PAR2-/- mice; P<.05). The vaccinated PAR2-/- mice had reduced inflammation-induced stomach tissue damage (tissue damage scores were 8.83±1.47 for WT mice and 4.86±1.35 for PAR2-/- mice; P<.002) and reduced T-helper (Th)17 responses, based on reduced urease-induced interleukin (IL)-17 secretion by stomach mononuclear cells (5182 ± 1265 pg/mL for WT mice and 350±436 pg/mL for PAR2-/- mice; P<.03) and reduced recruitment of CD4+ IL-17+ T cells into the gastric mucosa of PAR2-/- mice following bacterial challenge (3.7%±1.5% for WT mice and 2.6%±1.1% for PAR2-/- mice; P<.05). In vitro, H felis-stimulated dendritic cells (DCs) from WT mice induced greater secretion of IL-17 by ovalbumin-stimulated OT-II transgenic CD4+ T cells compared with DCs from PAR2-/- mice (4298±347 and 3230±779; P<.04), indicating that PAR2-/- DCs are impaired in priming of Th17 cells. Adoptive transfer of PAR2+/+ DCs into vaccinated PAR2-/- mice increased vaccine-induced protection (RUT values were 0.11±0.10 and 0.26±0.15 for injected and noninjected mice, respectively; P<.03). CONCLUSIONS: PAR2 activates DCs to mediate vaccine-induced protection against Helicobacter infection in mice.
Assuntos
Vacinas Bacterianas/administração & dosagem , Infecções por Helicobacter/prevenção & controle , Helicobacter felis/imunologia , Helicobacter pylori/imunologia , Receptor PAR-2/metabolismo , Estômago/efeitos dos fármacos , Urease/administração & dosagem , Administração Intranasal , Transferência Adotiva , Animais , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Células Dendríticas/transplante , Modelos Animais de Doenças , Feminino , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/enzimologia , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor PAR-2/deficiência , Receptor PAR-2/genética , Baço/efeitos dos fármacos , Baço/imunologia , Baço/microbiologia , Estômago/imunologia , Estômago/microbiologia , Estômago/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/microbiologia , Vacinas Sintéticas/administração & dosagemRESUMO
Helicobacter pylori infects the gastric mucosa of a large number of humans. Although asymptomatic in the vast majority of cases, H pylori infection can lead to the development of peptic ulcers gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Using a variety of mechanisms, H pylori locally suppresses the function of the host immune system to establish chronic infection. Systemic immunomodulation has been observed in both clinical and pre-clinical studies, which have demonstrated that H pylori infection is associated with reduced incidence of inflammatory diseases, such as asthma and Crohn's disease. The introduction of immunotherapies in the arsenal of anti-cancer drugs has revealed a new facet of H pylori-induced immune suppression. In this review, we will describe the intimate interactions between H pylori and its host, and formulate hypothtyeses describing the detrimental impact of H pylori infection on the efficacy of cancer immunotherapies.
Assuntos
Infecções por Helicobacter , Helicobacter pylori , Linfoma de Zona Marginal Tipo Células B , Mucosa Gástrica , Infecções por Helicobacter/complicações , Humanos , Imunoterapia/efeitos adversos , Linfoma de Zona Marginal Tipo Células B/patologiaRESUMO
The microbiome is now regarded as one of the hallmarks of cancer and several strategies to modify the gut microbiota to improve immune checkpoint inhibitor (ICI) activity are being evaluated in clinical trials. Preliminary data regarding the upper gastro-intestinal microbiota indicated that Helicobacter pylori seropositivity was associated with a negative prognosis in patients amenable to ICI. In 97 patients with advanced melanoma treated with ICI, we assessed the impact of H. pylori on outcomes and microbiome composition. We performed H. pylori serology and profiled the fecal microbiome with metagenomics sequencing. Among the 97 patients, 22% were H. pylori positive (Pos). H. pylori Pos patients had a significantly shorter overall survival (p = .02) compared to H. pylori negative (Neg) patients. In addition, objective response rate and progression-free survival were decreased in H. pylori Pos patients. Metagenomics sequencing did not reveal any difference in diversity indexes between the H. pylori groups. At the taxa level, Eubacterium ventriosum, Mediterraneibacter (Ruminococcus) torques, and Dorea formicigenerans were increased in the H. pylori Pos group, while Alistipes finegoldii, Hungatella hathewayi and Blautia producta were over-represented in the H. pylori Neg group. In a second independent cohort of patients with NSCLC, diversity indexes were similar in both groups and Bacteroides xylanisolvens was increased in H. pylori Neg patients. Our results demonstrated that the negative impact of H. pylori on outcomes seem to be independent from the fecal microbiome composition. These findings warrant further validation and development of therapeutic strategies to eradicate H. pylori in immuno-oncology arena.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Pulmonares , Melanoma , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/fisiologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Melanoma/tratamento farmacológico , SíndromeRESUMO
Several approaches to manipulate the gut microbiome for improving the activity of cancer immune-checkpoint inhibitors (ICI) are currently under evaluation. Here, we show that oral supplementation with the polyphenol-rich berry camu-camu (CC; Myrciaria dubia) in mice shifted gut microbial composition, which translated into antitumor activity and a stronger anti-PD-1 response. We identified castalagin, an ellagitannin, as the active compound in CC. Oral administration of castalagin enriched for bacteria associated with efficient immunotherapeutic responses (Ruminococcaceae and Alistipes) and improved the CD8+/FOXP3+CD4+ ratio within the tumor microenvironment. Moreover, castalagin induced metabolic changes, resulting in an increase in taurine-conjugated bile acids. Oral supplementation of castalagin following fecal microbiota transplantation from ICI-refractory patients into mice supported anti-PD-1 activity. Finally, we found that castalagin binds to Ruminococcus bromii and promoted an anticancer response. Altogether, our results identify castalagin as a polyphenol that acts as a prebiotic to circumvent anti-PD-1 resistance. SIGNIFICANCE: The polyphenol castalagin isolated from a berry has an antitumor effect through direct interactions with commensal bacteria, thus reprogramming the tumor microenvironment. In addition, in preclinical ICI-resistant models, castalagin reestablishes the efficacy of anti-PD-1. Together, these results provide a strong biological rationale to test castalagin as part of a clinical trial. This article is highlighted in the In This Issue feature, p. 873.
Assuntos
Microbioma Gastrointestinal , Animais , Bactérias , Transplante de Microbiota Fecal , Humanos , Camundongos , Polifenóis/farmacologia , Polifenóis/uso terapêuticoRESUMO
Helicobacter pylori (Hp) colonizes the human gastric mucosa with a high worldwide prevalence. Currently, Hp can be eradicated by the use of antibiotics. Due to the increase of antibiotic resistance, new therapeutic strategies need to be devised: one such approach being prophylactic vaccination. Pre-clinical and clinical data showed that a urease-based vaccine is efficient in decreasing Hp infection through the mobilization of T helper (Th)-dependent immune effectors, including eosinophils. Preliminary data have shown that upon vaccination and subsequent Hp infection, eosinophils accumulate in the gastric mucosa, suggesting a possible implication of this granulocyte subset in the vaccine-induced reduction of Hp infection. In our study, we confirm that activated eosinophils, expressing CD63, CD40, MHCII and PD-L1 at their cell surface, infiltrate the gastric mucosa during vaccine-induced reduction of Hp infection. Strikingly, we provide evidence that bone marrow derived eosinophils efficiently kill Hp in vitro, suggesting that eosinophils may participate to the vaccine-induced reduction of Hp infection. However, conversely to our expectations, the absence of eosinophils does not decrease the efficacy of this Hp vaccine in vivo. Indeed, vaccinated mice that have been genetically ablated of the eosinophil lineage or that have received anti-Sialic acid-binding immunoglobulin-like lectin F eosinophil-depleting antibodies, display a lower Hp colonization when compared to their eosinophil sufficient counterparts. Although the vaccine induces similar urease-specific humoral and Th responses in both eosinophil sufficient and deficient mice, a decreased production of anti-inflammatory cytokines, such as IL-10, TGFß, and calgranulin B, was specifically observed in eosinophil depleted mice. Taken together, our results suggest that gastric eosinophils maintain an anti-inflammatory environment, thus sustaining chronic Hp infection. Because eosinophils are one of the main immune effectors mobilized by Th2 responses, our study strongly suggests that the formulation of an Hp vaccine needs to include an adjuvant that preferentially primes Hp-specific Th1/Th17 responses.
Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Eosinófilos , Mucosa Gástrica , Infecções por Helicobacter/prevenção & controle , Camundongos , EstômagoRESUMO
The mechanisms maintaining adult lymphatic vascular specialization throughout life and their role in coordinating inter-organ communication to sustain homeostasis remain elusive. We report that inactivation of the mechanosensitive transcription factor Foxc2 in adult lymphatic endothelium leads to a stepwise intestine-to-lung systemic failure. Foxc2 loss compromised the gut epithelial barrier, promoted dysbiosis and bacterial translocation to peripheral lymph nodes, and increased circulating levels of purine metabolites and angiopoietin-2. Commensal microbiota depletion dampened systemic pro-inflammatory cytokine levels, corrected intestinal lymphatic dysfunction, and improved survival. Foxc2 loss skewed the specialization of lymphatic endothelial subsets, leading to populations with mixed, pro-fibrotic identities and to emergence of lymph node-like endothelial cells. Our study uncovers a cross-talk between lymphatic vascular function and commensal microbiota, provides single-cell atlas of lymphatic endothelial subtypes, and reveals organ-specific and systemic effects of dysfunctional lymphatics. These effects potentially contribute to the pathogenesis of diseases, such as inflammatory bowel disease, cancer, or lymphedema.
Assuntos
Vasos Linfáticos , Linfedema , Células Endoteliais/metabolismo , Endotélio Linfático/metabolismo , Endotélio Linfático/patologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Vasos Linfáticos/metabolismo , Linfedema/metabolismo , Linfedema/patologiaRESUMO
BACKGROUND & AIMS: Despite the proven ability of immunization to reduce Helicobacter infection in mouse models, the precise mechanism of protection has remained elusive. This study explores the possibility that interleukin (IL)-17 plays a role in the reduction of Helicobacter infection following vaccination of wild-type animals or in spontaneous reduction of bacterial infection in IL-10-deficient mice. METHODS: In mice, reducing Helicobacter infection, the levels and source of IL-17 were determined and the role of IL-17 in reduction of Helicobacter infection was probed by neutralizing antibodies. RESULTS: Gastric IL-17 levels were strongly increased in mice mucosally immunized with urease plus cholera toxin and challenged with Helicobacter felis as compared with controls (654 +/- 455 and 34 +/- 84 relative units for IL-17 messenger RNA expression [P < .01] and 6.9 +/- 8.4 and 0.02 +/- 0.04 pg for IL-17 protein concentration [P < .01], respectively). Flow cytometry analysis showed that a peak of CD4(+)IL-17(+) T cells infiltrating the gastric mucosa occurred in immunized mice in contrast to control mice (4.7% +/- 0.3% and 1.4% +/- 0.3% [P < .01], respectively). Gastric mucosa-infiltrating CD4(+)IL-17(+) T cells were also observed in IL-10-deficient mice that spontaneously reduced H felis infection (4.3% +/- 2.3% and 2% +/- 0.6% [P < .01], for infected and noninfected IL-10-deficient mice, respectively). In wild-type immunized mice, intraperitoneal injection of anti-IL-17 antibodies significantly inhibited inflammation and the reduction of Helicobacter infection in comparison with control antibodies (1 of 12 mice vs 9 of 12 mice reduced Helicobacter infection [P < .01], respectively). CONCLUSIONS: IL-17 plays a critical role in the immunization-induced reduction of Helicobacter infection from the gastric mucosa.
Assuntos
Vacinas Bacterianas/farmacologia , Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Memória Imunológica/fisiologia , Interleucina-17/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/prevenção & controle , Imuno-Histoquímica , Interleucina-10/deficiência , Interleucina-10/imunologia , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Peroxidase/metabolismo , Reação em Cadeia da Polimerase , Probabilidade , Distribuição Aleatória , Sensibilidade e Especificidade , Estatísticas não Paramétricas , Células Th1/imunologiaRESUMO
Expression of Toll-interacting protein (Tollip), a potent TLR modulator, decreases in patients with inflammatory bowel diseases (IBD), whereas Tollip-/- mice are susceptible to colitis. Tollip expression was shown to be reduced in sporadic adenoma. In contrast, we found variable Tollip expression in patients with colitis-associated adenomas. In Tollip-/- mice challenged to develop colitis-associated cancer (CAC), tumor formation was significantly reduced owing to decreased mucosal proliferative and apoptotic indexes. This protection was associated with blunt inflammatory responses without significant changes in microbial composition. mRNA expression of Cd62l and Ccr5 homing receptors was reduced in colons of untreated Tollip-/- mice, whereas CD62L+ CD8+ T cells accumulated in the periphery. In Tollip-deficient adenomas Ctla-4 mRNA expression and tumor-infiltrating CD4+ Foxp3+ regulatory T cell (Treg) were decreased. Our data show that protection from CAC in Tollip-deficient mice is associated with defects in lymphocyte accumulation and composition in colitis-associated adenomas.
RESUMO
Activation of interleukin-1 (IL-1) receptor (IL-1R), Toll-like receptor 2 (TLR2), and TLR4 triggers NF-kappaB and mitogen-activated protein kinase (MAPK)-dependent signaling, thereby initiating immune responses. Tollip has been implicated as a negative regulator of NF-kappaB signaling triggered by these receptors in in vitro studies. Here, deficient mice were used to determine the physiological contribution of Tollip to immunity. NF-kappaB, as well as MAPK, signaling appeared normal in Tollip-deficient cells stimulated with IL-1beta or the TLR4 ligand lipopolysaccharide (LPS). Similarly, IL-1beta- and TLR-driven activation of dendritic cells and lymphocytes was indistinguishable from wild-type cells. In contrast, the production of the proinflammatory cytokines, IL-6 and tumor necrosis factor alpha was significantly reduced after IL-1beta and LPS treatment at low doses but not at lethal doses of LPS. Tollip therefore controls the magnitude of inflammatory cytokine production in response to IL-1beta and LPS.
Assuntos
Células Dendríticas/imunologia , Interleucina-1/farmacologia , Interleucina-6/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lipopolissacarídeos/farmacologia , Linfócitos/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Dendríticas/efeitos dos fármacos , Regulação para Baixo , Quinases Associadas a Receptores de Interleucina-1 , Interleucina-6/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ativação Linfocitária/genética , Linfócitos/efeitos dos fármacos , Camundongos , Camundongos Mutantes , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genéticaRESUMO
The maintenance of homeostasis in the gut is a major challenge for the immune system. Here we demonstrate that the transcription factor MAF plays a central role in T cells for the prevention of gastro-intestinal inflammation. Conditional knock out mice lacking Maf in all T cells developed spontaneous late-onset colitis, correlating with a decrease of FOXP3+RORγt+ T cells proportion, dampened IL-10 production in the colon and an increase of inflammatory TH17 cells. Strikingly, FOXP3+ specific conditional knock out mice for MAF did not develop colitis and demonstrated normal levels of IL-10 in their colon, despite the incapacity of regulatory T cells lacking MAF to suppress colon inflammation in Rag1-/- mice transferred with naïve CD4+ T cells. We showed that one of the cellular sources of IL-10 in the colon of these mice are TH17 cells. Thus, MAF is critically involved in the maintenance of the gut homeostasis by regulating the balance between Treg and TH17 cells either at the level of their differentiation or through the modulation of their functions.
Assuntos
Colite/genética , Proteínas Proto-Oncogênicas c-maf/genética , Linfócitos T Reguladores/patologia , Células Th17/patologia , Animais , Células Cultivadas , Colite/imunologia , Colite/patologia , Feminino , Fatores de Transcrição Forkhead/análise , Fatores de Transcrição Forkhead/imunologia , Deleção de Genes , Interleucina-10/análise , Interleucina-10/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/análise , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Proteínas Proto-Oncogênicas c-maf/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologiaRESUMO
BACKGROUND: In contrast to wild type, interleukin-10-deficient (IL-10(-/-)) mice are able to clear Helicobacter infection. In this study, we investigated the immune response of IL-10(-/-) mice leading to the reduction of Helicobacter infection. MATERIALS AND METHODS: We characterized the immune responses of Helicobacter felis-infected IL-10(-/-) mice by studying the systemic antibody and cellular responses toward Helicobacter. We investigated the role of CD4(+) T cells in the Helicobacter clearance by injecting H. felis-infected IL-10(-/-) mice with anti-CD4 depleting antibodies. To examine the role of mast cells in Helicobacter clearance, we constructed and infected mast cells and IL-10 double-deficient mice. RESULTS: Reduction of Helicobacter infection in IL-10(-/-) mice is associated with strong humoral (fivefold higher serum antiurease antibody titers were measured in IL-10(-/-) in comparison to wild-type mice, p < .008) and cellular (urease-stimulated splenic CD4(+) T cells isolated from infected IL-10(-/-) mice produce 150-fold more interferon-gamma in comparison to wild-type counterparts, p < .008) immune responses directed toward Helicobacter. Depletion of CD4(+) cells from Helicobacter-infected IL-10(-/-) mice lead to the loss of bacterial clearance (rapid urease tests are threefold higher in CD4(+) depleted IL-10(-/-) in comparison to nondepleted IL-10(-/-) mice, p < .02). Mast cell IL-10(-/-) double-deficient mice clear H. felis infection, indicating that mast cells are unnecessary for the bacterial eradication in IL-10(-/-) mice. CONCLUSION: Taken together, these results suggest that CD4(+) cells are required for Helicobacter clearance in IL-10(-/-) mice. This reduction of Helicobacter infection is, however, not dependent on the mast cell population.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Helicobacter/imunologia , Interleucina-10/deficiência , Mastócitos/imunologia , Animais , Feminino , Citometria de Fluxo , Infecções por Helicobacter/genética , Interleucina-10/genética , Cinética , Masculino , Camundongos , Camundongos MutantesRESUMO
One of the major toxins secreted by H. pylori is the Vacuolating cytotoxin A (VacA) named after its ability to induce the formation of "vacuole"-like membrane vesicles in the cytoplasm of gastric cells. VacA has been associated with the disruption of mitochondrial functions, stimulation of apoptosis, blockade of T cell proliferation and promotion of regulatory T cells, thereby making it a promising vaccine target. Immunity to bacterial virulence factors is well known to protect humans against bacterial infections; hence, detoxified VacA has been evaluated as a vaccine antigen. Our short review summarizes the pre-clinical and clinical data that have been published on the use of VacA in the development of the H. pylori vaccine.