Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Methods Mol Biol ; 2835: 1-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39105901

RESUMO

Mesenchymal stem cells (MSCs) exhibit remarkable versatility and hold immense potential for tissue regeneration. They are actively investigated in clinical trials for various diseases and injuries, showcasing their therapeutic promise. However, traditional sources of MSCs have limitations in terms of scalability and storage. To address these challenges, this study aims to provide a method of creating an alternative source of induced pluripotent stem cells (iPSCs)-derived MSCs (iMSCs) from urinary epithelial cells (UECs) through a noninvasive procedure. This distinct subset of UECs found in urine samples offers an invaluable resource for generating autologous UE-iPSCs. iPSCs have distinct advantages over embryonic stem cells, as they can be generated from somatic cells, eliminating the need for human embryos and associated ethical concerns. Advancements in iPSC technology enable the differentiation of iMSCs, allowing researchers to create disease models, gain insights into disease mechanisms, and develop targeted therapies. This straightforward and noninvasive method aims to enhance the production of high-quality, autologous iMSCs with significant replicative and differentiation potential, making them suitable for regenerative therapy.


Assuntos
Diferenciação Celular , Células Epiteliais , Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Técnicas de Cultura de Células/métodos , Células Cultivadas
2.
Front Cell Dev Biol ; 12: 1308102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328550

RESUMO

Drug resistance has been a major obstacle in the quest for a cancer cure. Many chemotherapeutic treatments fail to overcome chemoresistance, resulting in tumor remission. The exact process that leads to drug resistance in many cancers has not been fully explored or understood. However, the discovery of RNA binding proteins (RBPs) has provided insight into various pathways and post-transcriptional gene modifications involved in drug tolerance. RBPs are evolutionarily conserved proteins, and their abnormal gene expression has been associated with cancer progression. Additionally, RBPs are aberrantly expressed in numerous neoplasms. RBPs have also been implicated in maintaining cancer stemness, epithelial-to-mesenchymal transition, and other processes. In this review, we aim to provide an overview of RBP-mediated mechanisms of drug resistance and their implications in cancer malignancy. We discuss in detail the role of major RBPs and their correlation with noncoding RNAs (ncRNAs) that are associated with the inhibition of chemosensitivity. Understanding and exploring the pathways of RBP-mediated chemoresistance will contribute to the development of improved cancer diagnosis and treatment strategies.

3.
AIDS Res Hum Retroviruses ; 39(7): 318-331, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36825522

RESUMO

Revolutionary progress in combinational antiretroviral therapy has transformed human immunodeficiency virus (HIV) infection into a chronic manageable disease; yet, there exists an uneasy truce between the virus and the immune cells, where inflammation is limited but infection continues to fester from latent reservoirs of the virus. Clinical studies have identified the major immune cell types that constitute the latent HIV-1 reservoirs as monocytes/macrophages and CD4+ T cells. Latency probing approaches have thrown some light on the interaction between the virus and the reservoir cells from the time of onset of infection. However, research combining latency reversal strategies and immunotherapies face daunting obstacles in clinical trials because of the lack of in-depth knowledge on viral pathogenesis and mechanisms of viral evasion, leaving us behind in the battle for HIV cure. This article reviews existing knowledge on the cells and mechanisms that contribute to the establishment and survival of HIV reservoirs in infected individuals.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Latência Viral , Macrófagos , Linfócitos T CD4-Positivos , Replicação Viral
4.
Front Immunol ; 13: 954396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238288

RESUMO

Background: The early diagnosis of tuberculosis using novel non-sputum-based biomarkers is of high priority in the End TB strategy. MicroRNAs (miRNAs) are significant regulators of TB pathogenesis and their differential expression pattern among healthy, latent, and active TB population has revealed their potentiality as biomarkers in recent studies. Thus, we systematically reviewed and performed a meta-analysis on the role of host miRNAs in TB diagnosis. We also reviewed the involvement of miRNAs in the immune response to Mycobacterium tuberculosis (Mtb). Methods: Pubmed, Ovid and Cochrane databases were searched to retrieve published literature from 2000 to 2020 using predefined keywords. We screened relevant studies based on inclusion and exclusion criteria and the included studies were assessed for their quality using STARD guidelines and QUADAS-2 tool. Funnel plots were constructed to assess the publication bias. The heterogeneity of studies and overall pooled results of sensitivity, specificity and DOR were determined using forest plots. Results: We retrieved a total of 447 studies collectively from all the databases, out of which 21 studies were included for qualitative analysis. In these studies, miR-29, miR-31, miR-125b, miR146a and miR-155 were consistently reported. The overall sensitivity, specificity and DOR of these miRNAs were found to be 87.9% (81.7-92.2), 81.2% (74.5-86.5) and 43.1(20.3-91.3) respectively. Among these, miR-31 had the maximum diagnostic accuracy, with a sensitivity of 96% (89.7-98.5), specificity of 89% (81.2-93.8) and DOR of 345.9 (90.2-1326.3), meeting the minimal target product profile (TPP) for TB diagnostics. Conclusion: miRNAs can thus be exploited as potential biomarkers for rapid detection of tuberculosis as evident from their diagnostic performance. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021226559 PROSPERO (CRD42021226559).


Assuntos
MicroRNAs , Mycobacterium tuberculosis , Tuberculose , Biomarcadores/análise , Humanos , MicroRNAs/genética , Mycobacterium tuberculosis/genética , Tuberculose/diagnóstico , Tuberculose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA