Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 165(1): 187-200.e7, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36966941

RESUMO

BACKGROUND & AIMS: Excess copper causes hepatocyte death in hereditary Wilson's disease (WD). Current WD treatments by copper-binding chelators may gradually reduce copper overload; they fail, however, to bring hepatic copper close to normal physiological levels. Consequently, lifelong daily dose regimens are required to hinder disease progression. This may result in severe issues due to nonadherence or unwanted adverse drug reactions and also due to drug switching and ultimate treatment failures. This study comparatively tested bacteria-derived copper binding agents-methanobactins (MBs)-for efficient liver copper depletion in WD rats as well as their safety and effect duration. METHODS: Copper chelators were tested in vitro and in vivo in WD rats. Metabolic cage housing allowed the accurate assessment of animal copper balances and long-term experiments related to the determination of minimal treatment phases. RESULTS: We found that copper-binding ARBM101 (previously known as MB-SB2) depletes WD rat liver copper dose dependently via fecal excretion down to normal physiological levels within 8 days, superseding the need for continuous treatment. Consequently, we developed a new treatment consisting of repetitive cycles, each of ∼1 week of ARBM101 applications, followed by months of in-between treatment pauses to ensure a healthy long-term survival in WD rats. CONCLUSIONS: ARBM101 safely and efficiently depletes excess liver copper from WD rats, thus allowing for short treatment periods as well as prolonged in-between rest periods.


Assuntos
Degeneração Hepatolenticular , Ratos , Animais , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/metabolismo , Cobre , Eliminação Hepatobiliar , Fígado/metabolismo , Quelantes/farmacologia , Quelantes/uso terapêutico
2.
Diabetologia ; 62(3): 494-503, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30506451

RESUMO

AIMS/HYPOTHESIS: Lack of insulin and infection/inflammation are the two most common causes of diabetic ketoacidosis (DKA). We used insulin withdrawal followed by insulin administration as a clinical model to define effects on substrate metabolism and to test whether increased levels of counter-regulatory hormones and cytokines and altered adipose tissue signalling participate in the early phases of DKA. METHODS: Nine individuals with type 1 diabetes, without complications, were randomly studied twice, in a crossover design, for 5 h followed by 2.5 h high-dose insulin clamp: (1) insulin-controlled euglycaemia (control) and (2) after 14 h of insulin withdrawal in a university hospital setting. RESULTS: Insulin withdrawal increased levels of glucose (6.1 ± 0.5 vs 18.6 ± 0.5 mmol/l), NEFA, 3-OHB (127 ± 18 vs 1837 ± 298 µmol/l), glucagon, cortisol and growth hormone and decreased HCO3- and pH, without affecting catecholamine or cytokine levels. Whole-body energy expenditure, endogenous glucose production (1.55 ± 0.13 vs 2.70 ± 0.31 mg kg-1 min-1), glucose turnover, non-oxidative glucose disposal, lipid oxidation, palmitate flux (73 [range 39-104] vs 239 [151-474] µmol/min), protein oxidation and phenylalanine flux all increased, whereas glucose oxidation decreased. In adipose tissue, Ser473 phosphorylation of Akt and mRNA levels of G0S2 decreased, whereas CGI-58 (also known as ABHD5) mRNA increased. Protein levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase phosphorylations were unaltered. Insulin therapy decreased plasma glucose concentrations dramatically after insulin withdrawal, without any detectable effect on net forearm glucose uptake. CONCLUSIONS/INTERPRETATION: Release of counter-regulatory hormones and overall increased catabolism, including lipolysis, are prominent features of preacidotic ketosis induced by insulin withdrawal, and dampening of Akt insulin signalling and transcriptional modulation of ATGL activity are involved. The lack of any increase in net forearm glucose uptake during insulin therapy after insulin withdrawal indicates muscle insulin resistance. TRIAL REGISTRATION: ClinicalTrials.gov NCT02077348 FUNDING: This study was supported by Aarhus University and the KETO Study Group/Danish Agency for Science Technology and Innovation.


Assuntos
Tecido Adiposo/metabolismo , Citocinas/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Metabolismo Energético/fisiologia , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Cetose/metabolismo , Adulto , Glicemia/metabolismo , Estudos Cross-Over , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Lipólise/fisiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
Acta Derm Venereol ; 98(4): 390-395, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29327063

RESUMO

The spleen is thought to play a role in atherosclerosis-associated immunity and cardiovascular research has indicated the existence of a cardio-splenic axis. The aim of this study was to assess splenic 18F-fluorodeoxyglucose uptake as a measure of systemic inflammation in patients with untreated psoriasis compared with historical controls assessed by positron emission tomography-computed tomography. Patients with moderate-to-severe psoriasis (n = 12, age 61.4 ± 4.1 years, 83% men, mean Psoriasis Area Severity Index score of 14.5) and controls (n = 23, age 60.4 ± 4.5 years, 87% men) were included in the study. Splenic inflammation was measured using the background-corrected spleen-liver-ratio (SLR) based on mean standardized uptake values. Mean ± SD SLR was increased in patients with psoriasis compared with controls (0.94 ± 0.11 vs. 0.82 ± 0.08; p = 0.001). SLR was significantly associated with aortic inflammation. These results support the existence of systemic inflammation in patients with psoriasis, and provide the rationale for a mechanistic link between psoriasis-driven inflammation and cardiovascular comorbidity through a spleen-atherosclerotic axis.


Assuntos
Aorta/diagnóstico por imagem , Aortite/diagnóstico por imagem , Fluordesoxiglucose F18/administração & dosagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Psoríase/diagnóstico por imagem , Compostos Radiofarmacêuticos/administração & dosagem , Baço/diagnóstico por imagem , Idoso , Aorta/imunologia , Aortite/imunologia , Feminino , Humanos , Fígado/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Paniculite/diagnóstico por imagem , Paniculite/imunologia , Valor Preditivo dos Testes , Psoríase/imunologia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Índice de Gravidade de Doença , Baço/imunologia , Gordura Subcutânea/diagnóstico por imagem , Gordura Subcutânea/imunologia , Imagem Corporal Total
4.
Diabetologia ; 60(1): 143-152, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27734104

RESUMO

AIMS/HYPOTHESIS: The aims of this study were to determine the role of lipolysis in hypoglycaemia and define the underlying intracellular mechanisms. METHODS: Nine healthy volunteers were randomised to treatment order of three different treatments (crossover design). Treatments were: (1) saline control; (2) hyperinsulinaemic hypoglycaemia (HH; i.v. bolus of 0.1 U/kg insulin); and (3) hyperinsulinaemic euglycaemia (HE; i.v. bolus of 0.1 U/kg insulin and 20% glucose). Inclusion criteria were that volunteers were healthy, aged >18 years, had a BMI between 19 and 26 kg/m2, and provided both written and oral informed consent. Exclusion criteria were the presence of a known chronic disease (including diabetes mellitus, epilepsy, ischaemic heart disease and cardiac arrhythmias) and regular use of prescription medication. The data was collected at the medical research facilities at Aarhus University Hospital, Denmark. The primary outcome was palmitic acid flux. Participants were blinded to intervention order, but caregivers were not. RESULTS: Adrenaline (epinephrine) and glucagon concentrations were higher during HH than during both HE and control treatments. NEFA levels and lipid oxidation rates (determined by indirect calorimetry) returned to control levels after 105 min. Palmitate flux was increased to control levels during HH (p = NS) and was more than twofold higher than during HE (overall mean difference between HH vs HE, 114 [95% CI 64, 165 µmol/min]; p < 0.001). In subcutaneous adipose tissue biopsies, we found elevated levels of hormone-sensitive lipase (HSL) and perilipin-1 phosphorylation 30 min after insulin injection during HH compared with both control and HE. There were no changes in the levels of adipose triglyceride lipase (ATGL), comparative gene identification-58 (CGI-58) or G0/G1 switch gene 2 (G0S2) proteins. Insulin-stimulated phosphorylation of Akt and mTOR were unaffected by hypoglycaemia. Expression of the G0S2 gene increased during HE and HH compared with control, without changes in ATGL (also known as PNPLA2) or CGI-58 (also known as ABHD5) mRNA levels. CONCLUSIONS/INTERPRETATION: These findings suggest that NEFAs become a major fuel source during insulin-induced hypoglycaemia and that lipolysis may be an important component of the counter-regulatory response. These effects appear to be mediated by rapid stimulation of protein kinase A (PKA) and HSL, compatible with activation of the ß-adrenergic catecholamine signalling pathway. TRIAL REGISTRATION: ClinicalTrials.gov NCT01919788 FUNDING: : The study was funded by Aarhus University, the Novo Nordisk Foundation and the KETO Study Group/Danish Agency for Science Technology and Innovation (grant no. 0603-00479, to NM).


Assuntos
Tecido Adiposo/metabolismo , Hipoglicemia/induzido quimicamente , Hipoglicemia/fisiopatologia , Insulina/farmacologia , Lipólise/fisiologia , Adolescente , Adulto , Glicemia/metabolismo , Peptídeo C/sangue , Estudos Cross-Over , Epinefrina/sangue , Ácidos Graxos não Esterificados/sangue , Feminino , Glucagon/sangue , Humanos , Insulina/sangue , Ácido Láctico/sangue , Metabolismo dos Lipídeos/fisiologia , Peroxidação de Lipídeos/fisiologia , Masculino , Norepinefrina/sangue , Adulto Jovem
5.
Cell Physiol Biochem ; 40(5): 1207-1220, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27960149

RESUMO

BACKGROUND/AIMS: Muscle bioactive lipids accumulation leads to several disorder states. The most common are insulin resistance (IR) and type 2 diabetes. There is an ongoing debate which of the lipid species plays the major role in induction of muscle IR. Our aim was to elucidate the role of particular lipid group in induction of muscle IR. METHODS: The analyses were performed on muscle from the following groups of rats: 1. Control, fed standard diet, 2 HFD, fed high fat diet, 3. HFD/Myr, fed HFD and treated with myriocin (Myr), an inhibitor of ceramide de novo synthesis. We utilized [U13C] palmitate isotope tracer infusion and mass spectrometry to measure content and synthesis rate of muscle long-chain acyl-CoA (LCACoA), diacylglycerols (DAG) and ceramide (Cer). RESULTS: HFD led to intramuscular accumulation of LCACoA, DAG and Cer and skeletal muscle IR. Myr-treatment caused decrease in Cer (most noticeable for stearoyl-Cer and oleoyl-Cer) and accumulation of DAG, possibly due to re-channeling of excess of intramuscular LCACoA towards DAG synthesis. An improvement in insulin sensitivity at both systemic and muscular level coincided with decrease in ceramide, despite elevated intramuscular DAG. CONCLUSION: The improved insulin sensitivity was associated with decreased muscle stearoyl- and oleoyl-ceramide content. The results indicate that accumulation of those ceramide species has the greatest impact on skeletal muscle insulin sensitivity in rats.


Assuntos
Ceramidas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Músculo Esquelético/patologia , Acil Coenzima A/metabolismo , Animais , Coenzima A Ligases/metabolismo , Ácidos Graxos/sangue , Ácidos Graxos Monoinsaturados/farmacologia , Glucose/farmacologia , Insulina/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Metformina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Análise de Componente Principal , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
6.
Pflugers Arch ; 467(7): 1523-1537, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25104573

RESUMO

Knowledge on the effects of divergent exercise on ostensibly protein degradation pathways may be valuable for counteracting muscle wasting and for understanding muscle remodelling. This study examined mRNA and/or protein levels of molecular markers of the ubiquitin proteasome pathway (UPP), including FBXO32 (atrogin-1), MURF-1, FBXO40, FOXO1 and FOXO3. Protein substrates of atrogin-1-including EIF3F, MYOG and MYOD1-and of MURF-1-including PKM and MHC-were also measured. Subjects completed 10 weeks of endurance training (ET) or resistance training (RT) followed by a single-bout of endurance exercise (EE) or resistance exercise (RE). Following training, atrogin-1, FBXO40, FOXO1 and FOXO3 mRNA increased independently of exercise mode, whereas MURF-1 mRNA and FOXO3 protein increased following ET only. No change in other target proteins occurred post-training. In the trained state, single-bout EE, but not RE, increased atrogin-1, MURF-1, FBXO40, FOXO1, FOXO3 mRNA and FOXO3 protein. In contrast to EE, FBXO40 mRNA and protein decreased following single-bout RE. MURF-1 and FOXO1 protein levels as well as the protein substrates of atrogin-1 and MURF-1 were unchanged following training and single-bout exercise. This study demonstrates that the intracellular signals elicited by ET and RT result in an upregulation of UPP molecular markers, with a greater increase following ET. However, in the trained state, the expression levels of UPP molecular markers are increased following single-bout EE, but are less responsive to single-bout RE. This suggests that adaptations following endurance exercise training are more reliant on protein UPP degradation processes than adaptations following resistance exercise training.


Assuntos
Músculo Esquelético/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Treinamento Resistido , Ubiquitina/metabolismo , Adaptação Fisiológica , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Proteína MyoD/genética , Proteína MyoD/metabolismo , Miogenina/genética , Miogenina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima , Adulto Jovem
7.
EJNMMI Res ; 14(1): 24, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436824

RESUMO

BACKGROUND: Correct classification of estrogen receptor (ER) status is essential for prognosis and treatment planning in patients with breast cancer (BC). Therefore, it is recommended to sample tumor tissue from an accessible metastasis. However, ER expression can show intra- and intertumoral heterogeneity. 16α-[18F]fluoroestradiol ([18F]FES) Positron Emission Tomography/Computed Tomography (PET/CT) allows noninvasive whole-body (WB) identification of ER distribution and is usually performed as a single static image 60 min after radiotracer injection. Using dynamic whole-body (D-WB) PET imaging, we examine [18F]FES kinetics and explore whether Patlak parametric images ( K i ) are quantitative and improve lesion visibility. RESULTS: This prospective study included eight patients with metastatic ER-positive BC scanned using a D-WB PET acquisition protocol. The kinetics of [18F]FES were best characterized by the irreversible two-tissue compartment model in tumor lesions and in the majority of organ tissues. K i values from Patlak parametric images correlated with K i values from the full kinetic analysis, r2 = 0.77, and with the semiquantitative mean standardized uptake value (SUVmean), r2 = 0.91. Furthermore, parametric K i images had the highest target-to-background ratio (TBR) in 162/164 metastatic lesions and the highest contrast-to-noise ratio (CNR) in 99/164 lesions compared to conventional SUV images. TBR was 2.45 (95% confidence interval (CI): 2.25-2.68) and CNR 1.17 (95% CI: 1.08-1.26) times higher in K i images compared to SUV images. These quantitative differences were seen as reduced background activity in the K i images. CONCLUSION: [18F]FES uptake is best described by an irreversible two-tissue compartment model. D-WB [18F]FES PET/CT scans can be used for direct reconstruction of parametric K i images, with superior lesion visibility and K i values comparable to K i values found from full kinetic analyses. This may aid correct ER classification and treatment decisions. Trial registration ClinicalTrials.gov: NCT04150731, https://clinicaltrials.gov/study/NCT04150731.

8.
Nat Commun ; 15(1): 2088, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453924

RESUMO

Metastatic prostate cancer (PCa) poses a significant therapeutic challenge with high mortality rates. Utilizing CRISPR-Cas9 in vivo, we target five potential tumor suppressor genes (Pten, Trp53, Rb1, Stk11, and RnaseL) in the mouse prostate, reaching humane endpoint after eight weeks without metastasis. By further depleting three epigenetic factors (Kmt2c, Kmt2d, and Zbtb16), lung metastases are present in all mice. While whole genome sequencing reveals few mutations in coding sequence, RNA sequencing shows significant dysregulation, especially in a conserved genomic region at chr5qE1 regulated by KMT2C. Depleting Odam and Cabs1 in this region prevents metastasis. Notably, the gene expression signatures, resulting from our study, predict progression-free and overall survival and distinguish primary and metastatic human prostate cancer. This study emphasizes positive genetic interactions between classical tumor suppressor genes and epigenetic modulators in metastatic PCa progression, offering insights into potential treatments.


Assuntos
Sistemas CRISPR-Cas , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transcriptoma , Família Multigênica
9.
J Physiol ; 591(15): 3749-63, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23753523

RESUMO

The striated muscle activator of Rho signalling (STARS) pathway is suggested to provide a link between external stress responses and transcriptional regulation in muscle. However, the sensitivity of STARS signalling to different mechanical stresses has not been investigated. In a comparative study, we examined the regulation of the STARS signalling pathway in response to unilateral resistance exercise performed as either eccentric (ECC) or concentric (CONC) contractions as well as prolonged training; with and without whey protein supplementation. Skeletal muscle STARS, myocardian-related transcription factor-A (MRTF-A) and serum response factor (SRF) mRNA and protein, as well as muscle cross-sectional area and maximal voluntary contraction, were measured. A single-bout of exercise produced increases in STARS and SRF mRNA and decreases in MRTF-A mRNA with both ECC and CONC exercise, but with an enhanced response occurring following ECC exercise. A 31% increase in STARS protein was observed exclusively after CONC exercise (P < 0.001), while pSRF protein levels increased similarly by 48% with both CONC and ECC exercise (P < 0.001). Prolonged ECC and CONC training equally stimulated muscle hypertrophy and produced increases in MRTF-A protein of 125% and 99%, respectively (P < 0.001). No changes occurred for total SRF protein. There was no effect of whey protein supplementation. These results show that resistance exercise provides an acute stimulation of the STARS pathway that is contraction mode dependent. The responses to acute exercise were more pronounced than responses to accumulated training, suggesting that STARS signalling is primarily involved in the initial phase of exercise-induced muscle adaptations.


Assuntos
Suplementos Nutricionais , Proteínas dos Microfilamentos/metabolismo , Proteínas do Leite/farmacologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Treinamento Resistido , Fatores de Transcrição/metabolismo , Adulto , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Masculino , Proteínas dos Microfilamentos/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Transativadores , Fatores de Transcrição/genética , Proteínas do Soro do Leite , Adulto Jovem
10.
Pflugers Arch ; 465(9): 1317-25, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23525673

RESUMO

The striated muscle activator of Rho signaling (STARS) protein and members of its downstream signaling pathway, including myocardin-related transcription factor-A (MRTF-A) and SRF, are increased in response to prolonged resistance exercise training but also following a single bout of endurance cycling. The aim of the present study was to measure and compare the regulation of STARS, MRTF-A and SRF mRNA and protein following 10 weeks of endurance training (ET) versus resistance training (RT), as well as before and following a single bout of endurance (EE) versus resistance exercise (RE). Following prolonged training, STARS, MRTF-A and SRF mRNA levels were all increased by similar magnitude, irrespective of training type. In the training-habituated state, STARS mRNA increased following a single-bout RE when measured 2.5 and 5 h post-exercise and had returned to resting level by 22 h following exercise. MRTF-A and SRF mRNA levels were decreased by 2.5, 5, and 22 h following a single bout of RE and EE exercise when compared to their respective basal levels, with no significant difference seen between the groups at any of the time points. No changes in protein levels were observed following the two modes of exercise training or a single bout of exercise. This study demonstrates that the stress signals elicited by ET and RT result in a comparable regulation of members of the STARS pathway. In contrast, a single bout of EE and RE, performed in the trained state, elicit different responses. These observations suggest that in the trained state, the acute regulation of the STARS pathway following EE or RE may be responsible for exercise-specific muscle adaptations.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Resistência Física , Treinamento Resistido , Transdução de Sinais , Fatores de Transcrição/metabolismo , Adulto , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Masculino , Proteínas dos Microfilamentos/genética , Músculo Esquelético/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Estresse Fisiológico , Transativadores , Fatores de Transcrição/genética
11.
Semin Nucl Med ; 53(5): 570-576, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36858906

RESUMO

Today preclinical PET imaging connects laboratory research with clinical applications. Here PET clearly bridges the gap, as nearly identical imaging protocols can be applied to both animal and humans. However, some hurdles exist and researchers must be careful, partly because the animals are usually anesthetized during the scans, while human volunteers are awake. This review is based on our own experiences of some of the most important pitfalls and how to overcome them. This includes how studies should be designed, how to select the right anesthesia and monitoring. The choice of anesthesia is quite crucial, as it may have a greater influence on the results than the effect of the tested procedures. Monitoring is necessary, as the animals cannot fully maintain homeostasis during anesthesia, and reliable results are dependent on a stable physiology. Additionally, it is important to note that rodents, in particular, are prone to rapidly becoming hypothermic. Thus, the selection of an appropriate anesthetic and monitoring protocol is crucial for both obtaining accurate results and ensuring animal welfare. Prior to imaging, catheters for tracer administration and, if necessary, blood sampling should be implanted. The administration of tracers should be done in a manner that minimizes interference with the scans, and the same applies to any serial blood sampling. The limited blood volume and organ size of rodents should also be taken into consideration when planning experiments. Finally, if the animal needs to be awakened after the scan, proper care must be taken to ensure their welfare.


Assuntos
Anestesia , Animais , Humanos , Anestesia/métodos , Tomografia por Emissão de Pósitrons , Pesquisa
12.
Semin Nucl Med ; 53(5): 558-569, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37268499

RESUMO

Cell lines are essential in biomedical research due to their adaptability and precise simulation of physiological and pathophysiological conditions. Cell culture techniques have greatly advanced our understanding of biology in various fields and are widely regarded as a reliable and durable tool. Their diverse applications make them indispensable in scientific research. Radiation-emitting compounds are commonly used in cell culture research to investigate biological processes. Radiolabeled compounds are utilized to study cell function, metabolism, molecular markers, receptor density, drug binding and kinetics, as well as to analyze the direct interaction of radiotracers with target organ cells. This allows for the examination of normal physiology and disease states. The In Vitro system simplifies the study and filters out nonspecific signals from the In Vivo environment, leading to more specific results. Moreover, cell cultures offer ethical advantages when evaluating new tracers and drugs in preclinical studies. While cell experiments cannot entirely replace animal experiments, they reduce the need for live animals in experimentation.


Assuntos
Pesquisa Biomédica , Medicina Nuclear , Animais , Técnicas de Cultura de Células , Cintilografia , Projetos de Pesquisa
13.
J Clin Endocrinol Metab ; 109(1): e155-e162, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37554078

RESUMO

BACKGROUND AND AIMS: During diabetic ketoacidosis (DKA), muscle tissue develops a profound insulin resistance that complicates reversal of this potentially lethal condition. We have investigated mediators of insulin action in human skeletal muscle during total insulin withdrawal in patients with type 1 diabetes, under the hypothesis that initial phases of DKA are associated with impaired postreceptor signaling. MATERIALS AND METHODS: Muscle biopsies were obtained during a randomized, controlled, crossover trial involving 9 patients with type 1 diabetes. The subjects were investigated during a high-dose insulin clamp preceded by either: (1) insulin-controlled euglycemia (control) or (2) total insulin withdrawal for 14 hours. Insulin action in skeletal muscle and whole-body substrate metabolism were investigated using western blot analysis and indirect calorimetry respectively. RESULTS: During insulin withdrawal, insulin-stimulated dephosphorylation of glycogen synthase decreased by ∼30% (P < .05) compared with the control situation. This was associated with a decrease in glucose oxidation by ∼30% (P < .05). Despite alterations in glucose metabolism, insulin transduction to glucose transport and protein synthesis (Akt, AS160, mammalian target of rapamycin, and eukaryotic translation initiation factor 4E binding protein) was intact, and glucose transporter (GLUT4) and mitochondrial proteins (succinate dehydrogenase complex, subunit A and prohibitin 1) protein expression were unaffected by the intervention. CONCLUSION: DKA impairs insulin-stimulated activation of glycogen synthase, whereas insulin signal transduction to glucose transport and protein synthesis remains intact. Reversal of insulin resistance during treatment of DKA should target postreceptor mediators of glucose uptake. CLINICAL TRIAL REGISTRATION NUMBER: NCT02077348.


Assuntos
Diabetes Mellitus Tipo 1 , Cetoacidose Diabética , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cetoacidose Diabética/metabolismo , Glucose/metabolismo , Glicogênio Sintase/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Transdução de Sinais , Estudos Cross-Over
14.
Res Sq ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37502859

RESUMO

Obesity-related type II diabetes (diabesity) has increased global morbidity and mortality dramatically. Previously, the ancient drug salicylate demonstrated promise for the treatment of type II diabetes, but its clinical use was precluded due to high dose requirements. In this study, we present a nitroalkene derivative of salicylate, 5-(2-nitroethenyl)salicylic acid (SANA), a molecule with unprecedented beneficial effects in diet-induced obesity (DIO). SANA reduces DIO, liver steatosis and insulin resistance at doses up to 40 times lower than salicylate. Mechanistically, SANA stimulated mitochondrial respiration and increased creatine-dependent energy expenditure in adipose tissue. Indeed, depletion of creatine resulted in the loss of SANA action. Moreover, we found that SANA binds to creatine kinases CKMT1/2, and downregulation CKMT1 interferes with the effect of SANA in vivo. Together, these data demonstrate that SANA is a first-in-class activator of creatine-dependent energy expenditure and thermogenesis in adipose tissue and emerges as a candidate for the treatment of diabesity.

15.
EJNMMI Res ; 12(1): 16, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347465

RESUMO

BACKGROUND: This study examines the clinical feasibility and impact of implementing a fully automated whole-body PET protocol with data-driven respiratory gating in patients with a broad range of oncological and non-oncological pathologies 592 FDG PET/CT patients were prospectively included. 200 patients with lesions in the torso were selected for further analysis, and ungated (UG), belt gated (BG) and data-driven gating (DDG) images were reconstructed. All images were reconstructed using the same data and without prolonged acquisition time for gated images. Images were quantitatively analysed for lesion uptake and metabolic volume, complemented by a qualitative analysis of visual lesion detection. In addition, the impact of gating on treatment response evaluation was evaluated in 23 patients with malignant lymphoma. RESULTS: Placement of the belt needed for BG was associated with problems in 27% of the BG scans, whereas no issues were reported using DDG imaging. For lesion quantification, DDG and BG images had significantly greater SUV values and smaller volumes than UG. The physicians reported notable image blurring in 44% of the UG images that was problematic for clinical evaluation in 4.5% of cases. CONCLUSION: Respiratory motion compensation using DDG is readily integrated into clinical routine and produce images with more accurate and significantly greater SUV values and smaller metabolic volumes. In our broad cohort of patients, the physicians overwhelmingly preferred gated over ungated images, with a slight preference for DDG images. However, even in patients with malignant disease in the torso, no additional diagnostic information was obtained by the gated images that could not be derived from the ungated images.

16.
Life Sci Alliance ; 5(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34857647

RESUMO

In Wilson disease, excessive copper accumulates in patients' livers and may, upon serum leakage, severely affect the brain according to current viewpoints. Present remedies aim at avoiding copper toxicity by chelation, for example, by D-penicillamine (DPA) or bis-choline tetrathiomolybdate (ALXN1840), the latter with a very high copper affinity. Hence, ALXN1840 may potentially avoid neurological deterioration that frequently occurs upon DPA treatment. As the etiology of such worsening is unclear, we reasoned that copper loosely bound to albumin, that is, mimicking a potential liver copper leakage into blood, may damage cells that constitute the blood-brain barrier, which was found to be the case in an in vitro model using primary porcine brain capillary endothelial cells. Such blood-brain barrier damage was avoided by ALXN1840, plausibly due to firm protein embedding of the chelator bound copper, but not by DPA. Mitochondrial protection was observed, a prerequisite for blood-brain barrier integrity. Thus, high-affinity copper chelators may minimize such deterioration in the treatment of neurologic Wilson disease.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Cobre/metabolismo , Molibdênio/farmacologia , Penicilamina/farmacologia , Animais , Transporte Biológico , Biomarcadores , Barreira Hematoencefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Sobrevivência Celular , Quelantes/farmacologia , Cobre/efeitos adversos , Cobre/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Modelos Moleculares , Tomografia por Emissão de Pósitrons , Ligação Proteica , Ratos , Albumina Sérica/química , Albumina Sérica/metabolismo , Relação Estrutura-Atividade
17.
Oncotarget ; 12(19): 1956-1961, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34548912

RESUMO

Prostate cancer is the second most diagnosed cancer in men. It is a slow progressing cancer, but when the disease reaches an advanced stage, treatment options are limited. Sequencing analyses of cancer samples have identified genes that can potentially drive disease progression. We implemented the CRISPR/Cas9 technology to simultaneously manipulate multiple genes in the murine prostate and thus to functionally test putative cancer driver genes in vivo. The activating protein-1 (AP-1) transcription factor is associated with many different cancer types, with the proto-oncogenes JUN and FOS being the two most intensely studied subunits. We analyzed expression of FOS and JUNB in human prostate cancer datasets and observed decreased expression in advanced stages. By applying CRISPR/Cas9 technology, the role of these two transcription factors in prostate cancer progression was functionally tested. Our data revealed that loss of either JunB or Fos in the context of Pten loss drives prostate cancer progression to invasive disease. Furthermore, loss of Fos increases Jun expression, and CRISPR inactivation of Jun in this context decreases cell proliferation. Overall, these in vivo studies reveal that JunB and Fos exhibit a tumor suppressor function by repressing invasive disease, whereas Jun is oncogenic and increases cell proliferation. This demonstrates that AP-1 factors are implicated in prostate cancer progression at different stages and display a dual function as tumor suppressor and as an oncogene in cancer progression.

18.
Cancers (Basel) ; 13(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652656

RESUMO

This study focused on STK11, PTEN, KRAS, and TP53, which are often found to be mutated in lung cancer. We compared Stk11 and Pten implication in lung cancer in combination with loss of Trp53 and gain of function of Kras in a CRISPR/Cas9 mouse model. Mice with loss of Stk11, Trp53, and KrasG12D mutation (SKT) reached human endpoint at around four months post-initiation. In comparison, mice with loss of Pten, Trp53, and KrasG12D mutation (PKT) survived six months or longer post-initiation. Pathological examination revealed an increase in proliferation in SKT deficient lung epithelia compared to PKT. This difference was independent of Pten loss, indicating that loss of Pten is dispensable for cell proliferation in lung adenocarcinoma. Furthermore, tumors with loss of Stk11, Trp53, and KrasG12D mutation had a significantly higher progression rate, monitored by PET/MRI scanning, compared to mice with loss of Pten, Trp53, and KrasG12D mutation, revealing that mutations in Stk11 are essential for adenocarcinoma progression. Overall, by using the CRISPR/Cas9 mouse model of lung adenocarcinoma, we showed that mutations in Stk11 are a key driver, whereas loss of Pten is dispensable for adenocarcinoma progression.

19.
Oncogene ; 40(13): 2437-2447, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33674748

RESUMO

Prostate cancer is a major global health concern with limited treatment options for advanced disease. Its heterogeneity challenges the identification of crucial driver genes implicated in disease progression. Activating protein-1 (AP-1) transcription factor is associated with cancer since the first identification of its subunits, the proto-oncogenes JUN and FOS. Whereas both JUN and FOS have been implicated in prostate cancer, this study provides the first functional evidence that FOS acts as a tumor suppressor during prostate cancer progression and invasion. Data mining revealed decreased FOS expression in prostate cancer and a further downregulation in metastatic disease, consistent with FOS expression in cell lines derived from different prostate cancer stages. FOS deficiency in prostate cancer cell lines increases cell proliferation and induces oncogenic pathway alterations. Importantly, in vivo CRISPR/Cas9-mediated Fos and Pten double mutation in murine prostate epithelium results in increased proliferation and invasiveness compared to the abrogation of Pten alone. Interestingly, enhanced Jun expression is observed in the murine prostatic intraepithelial neoplasia lacking Fos. CRISPR/Cas9-mediated knockout of Jun combined with Fos and Pten deficiency diminishes the increased proliferation rate in vivo but not the ability to form invasive disease. Overall, we demonstrate that loss of Fos promotes disease progression from clinical latent prostate cancer to advanced disease through accelerated proliferation and invasiveness, partly through Jun.


Assuntos
PTEN Fosfo-Hidrolase/genética , Neoplasia Prostática Intraepitelial/genética , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-fos/genética , Fator de Transcrição AP-1/genética , Animais , Sistemas CRISPR-Cas , Carcinogênese/genética , Proliferação de Células , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Próstata/patologia , Neoplasia Prostática Intraepitelial/patologia , Neoplasias da Próstata/patologia
20.
Cancers (Basel) ; 13(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208747

RESUMO

The generation of large transgenic animals is impeded by complex cloning, long maturation and gastrulation times. An introduction of multiple gene alterations increases the complexity. We have cloned a transgenic Cas9 minipig to introduce multiple mutations by CRISPR in somatic cells. Transgenic Cas9 pigs were generated by somatic cell nuclear transfer and were backcrossed to Göttingen Minipigs for two generations. Cas9 expression was controlled by FlpO-mediated recombination and was visualized by translation from red to yellow fluorescent protein. In vitro analyses in primary fibroblasts, keratinocytes and lung epithelial cells confirmed the genetic alterations executed by the viral delivery of single guide RNAs (sgRNA) to the target cells. Moreover, multiple gene alterations could be introduced simultaneously in a cell by viral delivery of sgRNAs. Cells with loss of TP53, PTEN and gain-of-function mutation in KRASG12D showed increased proliferation, confirming a transformation of the primary cells. An in vivo activation of Cas9 expression could be induced by viral delivery to the skin. Overall, we have generated a minipig with conditional expression of Cas9, where multiple gene alterations can be introduced to somatic cells by viral delivery of sgRNA. The development of a transgenic Cas9 minipig facilitates the creation of complex pre-clinical models for cancer research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA