Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(8): E1006-15, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26869717

RESUMO

Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.


Assuntos
Apresentação de Antígeno , Antígeno HLA-A2/imunologia , Imunoglobulinas/imunologia , Proteínas de Membrana/imunologia , Peptídeos/imunologia , Animais , Linhagem Celular , Drosophila melanogaster , Antígeno HLA-A2/genética , Humanos , Imunoglobulinas/genética , Proteínas de Membrana/genética , Peptídeos/genética
2.
Pharm Res ; 34(4): 765-779, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28150167

RESUMO

PURPOSE: Protein carbonylation is an irreversible modification of Lys, Arg, Thr and Pro amino acids under conditions of oxidative stress. Previous studies have reported specific carbonylated residues in purified recombinant albumins, albeit with a lack of agreement between the studies. Currently, structural factors that determine site-specific protein carbonylation are not well understood. METHODS: In this study, we utilized metal-catalyzed oxidizing conditions to generate carbonylation in recombinant human serum albumin (HSA) and granulocyte-colony stimulating factor (G-CSF), two proteins with distinct metal-binding abilities. To estimate predictability of HSA carbonylation sites, the same oxidative reaction was repeated based on the previously reported conditions. For G-CSF, oxidative conditions were gradually adjusted to achieve substantial levels of protein carbonylation. Corresponding accumulation of specific oxidized residues was identified and confirmed with high-resolution mass spectrometry. RESULTS: Our HSA dataset contained 55 carbonylated residues and showed a significant overlap with the previously published pooled data, indicating a certain level of carbonylation site specificity for albumins. Oxidation of G-CSF under multiple oxidative conditions consistently showed a highly specific carbonylation at position Pro45. We also detected a previously unreported, oxidation-induced cleavage site in G-CSF between His44 and Pro45, which might be attributed to a presence of a potential metal-binding site near residue Pro45. CONCLUSIONS: Our results show distinct patterns of protein carbonylation for HSA and G-CSF. Thus, specificity of protein carbonylation induced by metal-catalyzed oxidation is protein dependent and might be predicted by availability of transition metal binding site(s) within the protein.


Assuntos
Fator Estimulador de Colônias de Granulócitos/química , Metais/química , Carbonilação Proteica , Albumina Sérica/química , Aminoácidos/química , Sítios de Ligação , Biocatálise , Humanos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química
3.
J Pharm Sci ; 109(11): 3330-3339, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32835703

RESUMO

The presence of aggregates in monoclonal antibody (mAb) drug product (DP) formulations can present product quality challenges. Here we show that use of High Performance Size Exclusion Chromatography (HP-SEC), in conjunction with high-throughput dynamic light scattering (HT-DLS) analyses of mAb DPs can be a useful strategy to determine monomer content and the presence of aggregates under simulated stress conditions. This analytical approach was used to evaluate four commercially available mAb DPs under different conditions i.e.; original formulations, diluted, and thermo-mechanical stressed condition. Due to particle size limitations of HP-SEC columns, resulting in particles accumulating in the column frits prior to reaching the detector for analysis, there is a possibility that large mAb aggregates may not be detected. Both HP-SEC and HT-DLS were able to detect and resolve the mAb monomer (~10-12 nm) of the DPs in their recommended storage conditions. However, the ability to detect large aggregates (>40 nm) by both analytical methods differed, and HT-DLS was able to detect aggregates between 60 nm and 1400 nm under stress conditions. Our data indicates that HP-SEC, in conjunction with HT-DLS, may be beneficial to detect both mAb DP monomer content and multiple aggregate species (1-1000 nm) in the submicron size range.


Assuntos
Antineoplásicos Imunológicos , Preparações Farmacêuticas , Anticorpos Monoclonais , Cromatografia em Gel , Difusão Dinâmica da Luz
4.
Front Immunol ; 11: 629399, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33633747

RESUMO

Neoantigen formation due to the interaction of drug molecules with human leukocyte antigen (HLA)-peptide complexes can lead to severe hypersensitivity reactions. Flucloxacillin (FLX), a ß-lactam antibiotic for narrow-spectrum gram-positive bacterial infections, has been associated with severe immune-mediated drug-induced liver injury caused by an influx of T-lymphocytes targeting liver cells potentially recognizing drug-haptenated peptides in the context of HLA-B*57:01. To identify immunopeptidome changes that could lead to drug-driven immunogenicity, we used mass spectrometry to characterize the proteome and immunopeptidome of B-lymphoblastoid cells solely expressing HLA-B*57:01 as MHC-I molecules. Selected drug-conjugated peptides identified in these cells were synthesized and tested for their immunogenicity in HLA-B*57:01-transgenic mice. T cell responses were evaluated in vitro by immune assays. The immunopeptidome of FLX-treated cells was more diverse than that of untreated cells, enriched with peptides containing carboxy-terminal tryptophan and FLX-haptenated lysine residues on peptides. Selected FLX-modified peptides with drug on P4 and P6 induced drug-specific CD8+ T cells in vivo. FLX was also found directly linked to the HLA K146 that could interfere with KIR-3DL or peptide interactions. These studies identify a novel effect of antibiotics to alter anchor residue frequencies in HLA-presented peptides which may impact drug-induced inflammation. Covalent FLX-modified lysines on peptides mapped drug-specific immunogenicity primarily at P4 and P6 suggesting these peptide sites as drivers of off-target adverse reactions mediated by FLX. FLX modifications on HLA-B*57:01-exposed lysines may also impact interactions with KIR or TCR and subsequent NK and T cell function.


Assuntos
Floxacilina/imunologia , Antígenos HLA-B/imunologia , Haptenos/imunologia , Peptídeos/imunologia , Animais , Linhagem Celular , Antígenos HLA-B/genética , Humanos , Camundongos , Camundongos Transgênicos , Peptídeos/genética
5.
J Pharm Sci ; 107(8): 2055-2062, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29715479

RESUMO

Stability of therapeutic proteins (TPs) is a critical quality attribute that impacts both safety and efficacy of the drug. Size stability is routinely performed during and after biomanufacturing. Dynamic light scattering (DLS) is a commonly used technique to characterize hydrodynamic size of the TPs. Herein, we have developed a novel method to evaluate in-use and thermal stress stability of TPs using algorithm-driven high-throughput DLS. Five marketed TPs were tested under the guidance of customized algorithms. The TPs were evaluated at relevant temperature conditions as well as under dilution and thermal stress for size stability. We found that the TPs were stable under the in-use conditions tested; however, sample loss due to evaporation can lead to large protein aggregates. A combined assessment of autocorrelation function and photos of sample well could be useful in formulation screening. Dilution of TPs also has an impact on the hydrodynamic size. Thermal stress experiments showed the importance of using different data processing methods to access size distribution. Polydispersity index was useful in evaluating sample heterogeneity. Herein, we show that algorithm-driven high-throughput DLS can provide additional supportive information during and after biomanufacturing and the potential to be used in a quality control environment.


Assuntos
Anticorpos Monoclonais/química , Difusão Dinâmica da Luz/métodos , Preparações Farmacêuticas/química , Proteínas/química , Algoritmos , Estabilidade de Medicamentos , Humanos , Tamanho da Partícula , Agregados Proteicos , Estabilidade Proteica , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA