RESUMO
Streptococcus thermophilus strain ST64987 was exposed to a member of a recently discovered group of S. thermophilus phages (the 987 phage group), generating phage-insensitive mutants, which were then characterized phenotypically and genomically. Decreased phage adsorption was observed in selected bacteriophage-insensitive mutants, and was partnered with a sedimenting phenotype and increased cell chain length or aggregation. Whole genome sequencing of several bacteriophage-insensitive mutants identified mutations located in a gene cluster presumed to be responsible for cell wall polysaccharide production in this strain. Analysis of cell surface-associated glycans by methylation and NMR spectroscopy revealed a complex branched rhamno-polysaccharide in both ST64987 and phage-insensitive mutant BIM3. In addition, a second cell wall-associated polysaccharide of ST64987, composed of hexasaccharide branched repeating units containing galactose and glucose, was absent in the cell wall of mutant BIM3. Genetic complementation of three phage-resistant mutants was shown to restore the carbohydrate and phage resistance profiles of the wild-type strain, establishing the role of this gene cluster in cell wall polysaccharide production and phage adsorption and, thus, infection.
Assuntos
Parede Celular/química , Polissacarídeos Bacterianos/genética , Fagos de Streptococcus/metabolismo , Streptococcus thermophilus/virologia , Ligação Viral , DNA Bacteriano/genética , Teste de Complementação Genética , Genoma Bacteriano/genética , Família Multigênica/genética , Polissacarídeos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Streptococcus thermophilus/genética , Sequenciamento Completo do GenomaRESUMO
The plant root defines the interface between a multicellular eukaryote and soil, one of the richest microbial ecosystems on Earth. Notably, soil bacteria are able to multiply inside roots as benign endophytes and modulate plant growth and development, with implications ranging from enhanced crop productivity to phytoremediation. Endophytic colonization represents an apparent paradox of plant innate immunity because plant cells can detect an array of microbe-associated molecular patterns (also known as MAMPs) to initiate immune responses to terminate microbial multiplication. Several studies attempted to describe the structure of bacterial root endophytes; however, different sampling protocols and low-resolution profiling methods make it difficult to infer general principles. Here we describe methodology to characterize and compare soil- and root-inhabiting bacterial communities, which reveals not only a function for metabolically active plant cells but also for inert cell-wall features in the selection of soil bacteria for host colonization. We show that the roots of Arabidopsis thaliana, grown in different natural soils under controlled environmental conditions, are preferentially colonized by Proteobacteria, Bacteroidetes and Actinobacteria, and each bacterial phylum is represented by a dominating class or family. Soil type defines the composition of root-inhabiting bacterial communities and host genotype determines their ribotype profiles to a limited extent. The identification of soil-type-specific members within the root-inhabiting assemblies supports our conclusion that these represent soil-derived root endophytes. Surprisingly, plant cell-wall features of other tested plant species seem to provide a sufficient cue for the assembly of approximately 40% of the Arabidopsis bacterial root-inhabiting microbiota, with a bias for Betaproteobacteria. Thus, this root sub-community may not be Arabidopsis-specific but saprophytic bacteria that would naturally be found on any plant root or plant debris in the tested soils. By contrast, colonization of Arabidopsis roots by members of the Actinobacteria depends on other cues from metabolically active host cells.
Assuntos
Arabidopsis/microbiologia , Bactérias/isolamento & purificação , Metagenoma , Raízes de Plantas/microbiologia , Actinobacteria/isolamento & purificação , Arabidopsis/classificação , Bactérias/classificação , Bactérias/genética , Bactérias/ultraestrutura , Bacteroidetes/isolamento & purificação , Biodiversidade , Parede Celular/metabolismo , Parede Celular/microbiologia , Ecossistema , Endófitos/classificação , Endófitos/genética , Endófitos/crescimento & desenvolvimento , Endófitos/isolamento & purificação , Especificidade de Hospedeiro , Hibridização in Situ Fluorescente , Células Vegetais/microbiologia , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Rizosfera , Ribotipagem , Solo/análise , Solo/química , Microbiologia do SoloRESUMO
Plants host at the contact zone with soil a distinctive root-associated bacterial microbiota believed to function in plant nutrition and health. We investigated the diversity of the root microbiota within a phylogenetic framework of hosts: three Arabidopsis thaliana ecotypes along with its sister species Arabidopsis halleri and Arabidopsis lyrata, as well as Cardamine hirsuta, which diverged from the former â¼ 35 Mya. We surveyed their microbiota under controlled environmental conditions and of A. thaliana and C. hirsuta in two natural habitats. Deep 16S rRNA gene profiling of root and corresponding soil samples identified a total of 237 quantifiable bacterial ribotypes, of which an average of 73 community members were enriched in roots. The composition of this root microbiota depends more on interactions with the environment than with host species. Interhost species microbiota diversity is largely quantitative and is greater between the three Arabidopsis species than the three A. thaliana ecotypes. Host species-specific microbiota were identified at the levels of individual community members, taxonomic groups, and whole root communities. Most of these signatures were observed in the phylogenetically distant C. hirsuta. However, the branching order of host phylogeny is incongruent with interspecies root microbiota diversity, indicating that host phylogenetic distance alone cannot explain root microbiota diversification. Our work reveals within 35 My of host divergence a largely conserved and taxonomically narrow root microbiota, which comprises stable community members belonging to the Actinomycetales, Burkholderiales, and Flavobacteriales.
Assuntos
Brassicaceae/microbiologia , Microbiota/genética , Raízes de Plantas/microbiologia , Actinomycetales/genética , Bacteroidetes/genética , Sequência de Bases , Betaproteobacteria/genética , Primers do DNA/genética , Alemanha , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
Plants monitor and integrate temperature, photoperiod and light quality signals to respond to continuous changes in their environment. The GIGANTEA (GI) protein is central in diverse signaling pathways, including photoperiodic, sugar and light signaling pathways, stress responses and circadian clock regulation. Previously, GI was shown to activate expression of the key floral regulators CONSTANS (CO) and FLOWERING LOCUS T (FT) by facilitating degradation of a family of CYCLING DOF FACTOR (CDF) transcriptional repressors. However, whether CDFs are implicated in other processes affected by GI remains unclear. We investigated the contribution of the GI-CDF module to traits that depend on GI. Transcriptome profiling indicated that mutations in GI and the CDF genes have antagonistic effects on expression of a wider set of genes than CO and FT, whilst other genes are regulated by GI independently of the CDFs. Detailed expression studies followed by phenotypic assays showed that the CDFs function downstream of GI, influencing responses to freezing temperatures and growth, but are not necessary for proper clock function. Thus GI-mediated regulation of CDFs contributes to several processes in addition to flowering, but is not implicated in all of the traits influenced by GI.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Relógios Circadianos , Cotilédone/genética , Cotilédone/fisiologia , Cotilédone/efeitos da radiação , Flores , Congelamento , Perfilação da Expressão Gênica , Hipocótilo/genética , Hipocótilo/fisiologia , Hipocótilo/efeitos da radiação , Luz , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Fenótipo , Fotoperíodo , Proteínas Repressoras/genética , Transdução de Sinais , Fatores de Transcrição/genéticaRESUMO
Barley powdery mildew, Blumeria graminis f. sp. hordei (Bgh), is an obligate biotrophic ascomycete fungal pathogen that can grow and reproduce only on living cells of wild or domesticated barley (Hordeum sp.). Domestication and deployment of resistant barley cultivars by humans selected for amplification of Bgh isolates with different virulence combinations. We sequenced the genomes of two European Bgh isolates, A6 and K1, for comparative analysis with the reference genome of isolate DH14. This revealed a mosaic genome structure consisting of large isolate-specific DNA blocks with either high or low SNP densities. Some of the highly polymorphic blocks likely accumulated SNPs for over 10,000 years, well before the domestication of barley. These isolate-specific blocks of alternating monomorphic and polymorphic regions imply an exceptionally large standing genetic variation in the Bgh population and might be generated and maintained by rare outbreeding and frequent clonal reproduction. RNA-sequencing experiments with isolates A6 and K1 during four early stages of compatible and incompatible interactions on leaves of partially immunocompromised Arabidopsis mutants revealed a conserved Bgh transcriptional program during pathogenesis compared with the natural host barley despite ~200 million years of reproductive isolation of these hosts. Transcripts encoding candidate-secreted effector proteins are massively induced in successive waves. A specific decrease in candidate-secreted effector protein transcript abundance in the incompatible interaction follows extensive transcriptional reprogramming of the host transcriptome and coincides with the onset of localized host cell death, suggesting a host-inducible defense mechanism that targets fungal effector secretion or production.
Assuntos
Ascomicetos/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , Hordeum/genética , Hordeum/microbiologia , Especificidade de Hospedeiro , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/genética , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Especificidade da Espécie , Virulência/genéticaRESUMO
The nucleotide-binding domain and leucine-rich repeat (NLR) family of plant receptors detects pathogen-derived molecules, designated effectors, inside host cells and mediates innate immune responses to pathogenic invaders. Genetic evidence revealed species-specific coevolution of many NLRs with effectors from host-adapted pathogens, suggesting that the specificity of these NLRs is restricted to the host or closely related plant species. However, we report that an NLR immune receptor (MLA1) from monocotyledonous barley is fully functional in partially immunocompromised dicotyledonous Arabidopsis thaliana against the barley powdery mildew fungus, Blumeria graminis f. sp. hordei. This implies ~200 million years of evolutionary conservation of the underlying immune mechanism. A time-course RNA-seq analysis in transgenic Arabidopsis lines detected sustained expression of a large MLA1-dependent gene cluster. This cluster is greatly enriched in genes known to respond to the fungal cell wall-derived microbe-associated molecular pattern chitin. The MLA1-dependent sustained transcript accumulation could define a conserved function of the nuclear pool of MLA1 detected in barley and Arabidopsis. We also found that MLA1-triggered immunity was fully retained in mutant plants that are simultaneously depleted of ethylene, jasmonic acid, and salicylic acid signaling. This points to the existence of an evolutionarily conserved and phytohormone-independent MLA1-mediated resistance mechanism. This also suggests a conserved mechanism for internalization of B. graminis f. sp. hordei effectors into host cells of flowering plants. Furthermore, the deduced connectivity of the NLR to multiple branches of immune signaling pathways likely confers increased robustness against pathogen effector-mediated interception of host immune signaling and could have contributed to the evolutionary preservation of the immune mechanism.
Assuntos
Arabidopsis/imunologia , Ascomicetos/imunologia , Resistência à Doença/imunologia , Proteínas de Plantas/imunologia , Receptores Citoplasmáticos e Nucleares/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Sequência de Bases , Vetores Genéticos/genética , Immunoblotting , Dados de Sequência Molecular , Proteínas de Plantas/genética , Análise de Sequência de RNA , Especificidade da Espécie , Transformação GenéticaRESUMO
Hepatic peroxisomes are essential for lipid conversions that include the formation of mature conjugated bile acids, the degradation of branched chain fatty acids, and the synthesis of docosahexaenoic acid. Through unresolved mechanisms, deletion of functional peroxisomes from mouse hepatocytes (L-Pex5(-/-) mice) causes severe structural and functional abnormalities at the inner mitochondrial membrane. We now demonstrate that the peroxisomal and mitochondrial anomalies trigger energy deficits, as shown by increased AMP/ATP and decreased NAD(+)/NADH ratios. This causes suppression of gluconeogenesis and glycogen synthesis and up-regulation of glycolysis. As a consequence, L-Pex5(-/-) mice combust more carbohydrates resulting in lower body weights despite increased food intake. The perturbation of carbohydrate metabolism does not require a long term adaptation to the absence of functional peroxisomes as similar metabolic changes were also rapidly induced by acute elimination of Pex5 via adenoviral administration of Cre. Despite its marked activation, peroxisome proliferator-activated receptor α (PPARα) was not causally involved in these metabolic perturbations, because all abnormalities still manifested when peroxisomes were eliminated in a peroxisome proliferator-activated receptor α null background. Instead, AMP-activated kinase activation was responsible for the down-regulation of glycogen synthesis and induction of glycolysis. Remarkably, PGC-1α was suppressed despite AMP-activated kinase activation, a paradigm not previously reported, and they jointly contributed to impaired gluconeogenesis. In conclusion, lack of functional peroxisomes from hepatocytes results in marked disturbances of carbohydrate homeostasis, which are consistent with adaptations to an energy deficit. Because this is primarily due to impaired mitochondrial ATP production, these L-Pex5-deficient livers can also be considered as a model for secondary mitochondrial hepatopathies.
Assuntos
Proteínas Quinases Ativadas por AMP/química , Carboidratos/química , Mitocôndrias/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Transativadores/metabolismo , Animais , Calorimetria/métodos , Metabolismo dos Carboidratos , Glucose/química , Glicólise , Hepatócitos/metabolismo , Lipídeos/química , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptor 1 de Sinal de Orientação para Peroxissomos , Fatores de TranscriçãoRESUMO
Starvation elicits a complex adaptive response in an organism. No information on transcriptional regulation of metabolic adaptations is available. We, therefore, studied the gene expression profiles of brain, small intestine, kidney, liver, and skeletal muscle in mice that were subjected to 0-72 h of fasting. Functional-category enrichment, text mining, and network analyses were employed to scrutinize the overall adaptation, aiming to identify responsive pathways, processes, and networks, and their regulation. The observed transcriptomics response did not follow the accepted "carbohydrate-lipid-protein" succession of expenditure of energy substrates. Instead, these processes were activated simultaneously in different organs during the entire period. The most prominent changes occurred in lipid and steroid metabolism, especially in the liver and kidney. They were accompanied by suppression of the immune response and cell turnover, particularly in the small intestine, and by increased proteolysis in the muscle. The brain was extremely well protected from the sequels of starvation. 60% of the identified overconnected transcription factors were organ-specific, 6% were common for 4 organs, with nuclear receptors as protagonists, accounting for almost 40% of all transcriptional regulators during fasting. The common transcription factors were PPARα, HNF4α, GCRα, AR (androgen receptor), SREBP1 and -2, FOXOs, EGR1, c-JUN, c-MYC, SP1, YY1, and ETS1. Our data strongly suggest that the control of metabolism in four metabolically active organs is exerted by transcription factors that are activated by nutrient signals and serves, at least partly, to prevent irreversible brain damage.
Assuntos
Jejum/metabolismo , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Inanição/metabolismo , Esteroides/metabolismo , Transcrição Gênica , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos , Especificidade de Órgãos , Fatores de Transcrição/biossínteseRESUMO
BACKGROUND: Protein effectors of pathogenicity are instrumental in modulating host immunity and disease resistance. The powdery mildew pathogen of grasses Blumeria graminis causes one of the most important diseases of cereal crops. B. graminis is an obligate biotrophic pathogen and as such has an absolute requirement to suppress or avoid host immunity if it is to survive and cause disease. RESULTS: Here we characterise a superfamily predicted to be the full complement of Candidates for Secreted Effector Proteins (CSEPs) in the fungal barley powdery mildew parasite B. graminis f.sp. hordei. The 491 genes encoding these proteins constitute over 7% of this pathogen's annotated genes and most were grouped into 72 families of up to 59 members. They were predominantly expressed in the intracellular feeding structures called haustoria, and proteins specifically associated with the haustoria were identified by large-scale mass spectrometry-based proteomics. There are two major types of effector families: one comprises shorter proteins (100-150 amino acids), with a high relative expression level in the haustoria and evidence of extensive diversifying selection between paralogs; the second type consists of longer proteins (300-400 amino acids), with lower levels of differential expression and evidence of purifying selection between paralogs. An analysis of the predicted protein structures underscores their overall similarity to known fungal effectors, but also highlights unexpected structural affinities to ribonucleases throughout the entire effector super-family. Candidate effector genes belonging to the same family are loosely clustered in the genome and are associated with repetitive DNA derived from retro-transposons. CONCLUSIONS: We employed the full complement of genomic, transcriptomic and proteomic analyses as well as structural prediction methods to identify and characterize the members of the CSEPs superfamily in B. graminis f.sp. hordei. Based on relative intron position and the distribution of CSEPs with a ribonuclease-like domain in the phylogenetic tree we hypothesize that the associated genes originated from an ancestral gene, encoding a secreted ribonuclease, duplicated successively by repetitive DNA-driven processes and diversified during the evolution of the grass and cereal powdery mildew lineage.
Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Hordeum/microbiologia , Micoses/genética , Micoses/imunologia , Sequência de Aminoácidos , Grão Comestível/microbiologia , Hordeum/metabolismo , Interações Hospedeiro-Patógeno/genética , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteômica , Alinhamento de SequênciaRESUMO
Powdery mildews are phytopathogenic ascomycetes that have an obligate biotrophic lifestyle and establish intimate relationships with their plant hosts. A crucial aspect of this plant-fungus interaction is the formation of specialized fungal infection structures termed haustoria. Although located within the cell boundaries of plant epidermal cells, haustoria remain separated from the plant cytoplasm by a host plasma membrane derivative, the extrahaustorial membrane. Haustoria are thought to represent pivotal sites of nutrient uptake and effector protein delivery. We enriched haustorial complexes from Arabidopsis thaliana plants infected with the powdery mildew fungus Golovinomyces orontii and performed in-depth transcriptome analysis by 454-based pyrosequencing of haustorial cDNAs. We assembled 7077 expressed sequence tag (EST) contigs with greater than 5-fold average coverage and analyzed these with regard to the respective predicted protein functions. We found that transcripts coding for gene products with roles in protein turnover, detoxification of reactive oxygen species and fungal pathogenesis are abundant in the haustorial EST contigs, while surprisingly transcripts encoding presumptive nutrient transporters were not highly represented in the haustorial cDNA library. A substantial proportion (â¼38%) of transcripts coding for predicted secreted proteins comprises effector candidates. Our data provide valuable insights into the transcriptome of the key infection structure of a model obligate biotrophic phytopathogen.
Assuntos
Ascomicetos/genética , Transcriptoma , Arabidopsis/microbiologia , Ascomicetos/isolamento & purificação , Etiquetas de Sequências Expressas , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Doenças das Plantas/microbiologiaRESUMO
The mitochondrial beta-oxidation system is one of the central metabolic pathways of energy metabolism in mammals. Enzyme defects in this pathway cause fatty acid oxidation disorders. To elucidate the role of 2,4-dienoyl-CoA reductase (DECR) as an auxiliary enzyme in the mitochondrial beta-oxidation of unsaturated fatty acids, we created a DECR-deficient mouse line. In Decr(-/-) mice, the mitochondrial beta-oxidation of unsaturated fatty acids with double bonds is expected to halt at the level of trans-2, cis/trans-4-dienoyl-CoA intermediates. In line with this expectation, fasted Decr(-/-) mice displayed increased serum acylcarnitines, especially decadienoylcarnitine, a product of the incomplete oxidation of linoleic acid (C(18:2)), urinary excretion of unsaturated dicarboxylic acids, and hepatic steatosis, wherein unsaturated fatty acids accumulate in liver triacylglycerols. Metabolically challenged Decr(-/-) mice turned on ketogenesis, but unexpectedly developed hypoglycemia. Induced expression of peroxisomal beta-oxidation and microsomal omega-oxidation enzymes reflect the increased lipid load, whereas reduced mRNA levels of PGC-1alpha and CREB, as well as enzymes in the gluconeogenetic pathway, can contribute to stress-induced hypoglycemia. Furthermore, the thermogenic response was perturbed, as demonstrated by intolerance to acute cold exposure. This study highlights the necessity of DECR and the breakdown of unsaturated fatty acids in the transition of intermediary metabolism from the fed to the fasted state.
Assuntos
Hipoglicemia/fisiopatologia , Corpos Cetônicos/biossíntese , Mitocôndrias/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/deficiência , Estresse Fisiológico , Animais , Ácidos Graxos Insaturados/metabolismo , Feminino , Glucose/metabolismo , Hipoglicemia/enzimologia , Hipoglicemia/genética , Hipoglicemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Triglicerídeos/metabolismoRESUMO
Reactive oxygen species (ROS) have emerged as signals in the responses of plants to stress. Arabidopsis Enhanced Disease Susceptibility1 (EDS1) regulates defense and cell death against biotrophic pathogens and controls cell death propagation in response to chloroplast-derived ROS. Arabidopsis Nudix hydrolase7 (nudt7) mutants are sensitized to photo-oxidative stress and display EDS1-dependent enhanced resistance, salicylic acid (SA) accumulation and initiation of cell death. Here we explored the relationship between EDS1, EDS1-regulated SA and ROS by examining gene expression profiles, photo-oxidative stress and resistance phenotypes of nudt7 mutants in combination with eds1 and the SA-biosynthetic mutant, sid2. We establish that EDS1 controls steps downstream of chloroplast-derived O(2)(*-) that lead to SA-assisted H(2)O(2) accumulation as part of a mechanism limiting cell death. A combination of EDS1-regulated SA-antagonized and SA-promoted processes is necessary for resistance to host-adapted pathogens and for a balanced response to photo-oxidative stress. In contrast to SA, the apoplastic ROS-producing enzyme NADPH oxidase RbohD promotes initiation of cell death during photo-oxidative stress. Thus, chloroplastic O(2)(*-) signals are processed by EDS1 to produce counter-balancing activities of SA and RbohD in the control of cell death. Our data strengthen the idea that EDS1 responds to the status of O(2)(*-) or O(2)(*-)-generated molecules to coordinate cell death and defense outputs. This activity may enable the plant to respond flexibly to different biotic and abiotic stresses in the environment.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Estresse Oxidativo , Ácido Salicílico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo , RNA de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de DNA , Estresse Fisiológico , Nudix HidrolasesRESUMO
⢠A hallmark of the innate immune system of plants is the biosynthesis of low-molecular-weight compounds referred to as secondary metabolites. Tryptophan-derived branch pathways contribute to the capacity for chemical defense against microbes in Arabidopsis thaliana. ⢠Here, we investigated phylogenetic patterns of this metabolic pathway in relatives of A. thaliana following inoculation with filamentous fungal pathogens that employ contrasting infection strategies. ⢠The study revealed unexpected phylogenetic conservation of the pathogen-induced indole glucosinolate (IG) metabolic pathway, including a metabolic shift of IG biosynthesis to 4-methoxyindol-3-ylmethylglucosinolate and IG metabolization. By contrast, indole-3-carboxylic acid and camalexin biosyntheses are clade-specific innovations within this metabolic framework. A Capsella rubella accession was found to be devoid of any IG metabolites and to lack orthologs of two A. thaliana genes needed for 4-methoxyindol-3-ylmethylglucosinolate biosynthesis or hydrolysis. However, C. rubella was found to retain the capacity to deposit callose after treatment with the bacterial flagellin-derived epitope flg22 and pre-invasive resistance against a nonadapted powdery mildew fungus. ⢠We conclude that pathogen-inducible IG metabolism in the Brassicaceae is evolutionarily ancient, while other tryptophan-derived branch pathways represent relatively recent manifestations of a plant-pathogen arms race. Moreover, at least one Brassicaceae lineage appears to have evolved IG-independent defense signaling and/or output pathway(s).
Assuntos
Arabidopsis/metabolismo , Brassicaceae/metabolismo , Brassicaceae/microbiologia , Variação Genética , Glucosinolatos/metabolismo , Indóis/metabolismo , Filogenia , Triptofano/metabolismo , Absorção/efeitos da radiação , Sequência de Aminoácidos , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/efeitos da radiação , Ascomicetos/fisiologia , Ascomicetos/efeitos da radiação , Botrytis/fisiologia , Botrytis/efeitos da radiação , Brassicaceae/imunologia , Glucosinolatos/química , Imunidade Inata/efeitos da radiação , Indóis/química , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Tiazóis/metabolismo , Triptofano/química , Raios UltravioletaRESUMO
Arabidopsis (Arabidopsis thaliana) genes MILDEW RESISTANCE LOCUS O2 (MLO2), MLO6, and MLO12 exhibit unequal genetic redundancy with respect to the modulation of defense responses against powdery mildew fungi and the control of developmental phenotypes such as premature leaf decay. We show that early chlorosis and necrosis of rosette leaves in mlo2 mlo6 mlo12 mutants reflects an authentic but untimely leaf senescence program. Comparative transcriptional profiling revealed that transcripts of several genes encoding tryptophan biosynthetic and metabolic enzymes hyperaccumulate during vegetative development in the mlo2 mlo6 mlo12 mutant. Elevated expression levels of these genes correlate with altered steady-state levels of several indolic metabolites, including the phytoalexin camalexin and indolic glucosinolates, during development in the mlo2 single mutant and the mlo2 mlo6 mlo12 triple mutant. Results of genetic epistasis analysis suggest a decisive role for indolic metabolites in mlo2-conditioned antifungal defense against both biotrophic powdery mildews and a camalexin-sensitive strain of the necrotrophic fungus Botrytis cinerea. The wound- and pathogen-responsive callose synthase POWDERY MILDEW RESISTANCE4/GLUCAN SYNTHASE-LIKE5 was found to be responsible for the spontaneous callose deposits in mlo2 mutant plants but dispensable for mlo2-conditioned penetration resistance. Our data strengthen the notion that powdery mildew resistance of mlo2 genotypes is based on the same defense execution machinery as innate antifungal immune responses that restrict the invasion of nonadapted fungal pathogens.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Doenças das Plantas/genética , Triptofano/biossíntese , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Botrytis , Clorofila/análise , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Imunidade Inata/genética , Indóis/metabolismo , Metaboloma , Mutagênese Insercional , Análise de Sequência com Séries de Oligonucleotídeos , Proteoma , RNA de Plantas/genética , Tiazóis/metabolismoRESUMO
Mice with inactivation of the D-specific multifunctional protein 2 (MFP2), a crucial enzyme of peroxisomal beta-oxidation, develop multiple pathologies in diverse tissues already starting in the postnatal period. Gene expression profiling performed on liver of 2-day-old pups revealed up-regulation of PPAR alpha responsive genes in knockout mice. Surprisingly, also genes involved in cholesterol biosynthesis were markedly induced. Real-time PCR confirmed the induction of PPAR alpha target genes and of HMGCR and SREBP2, both involved in cholesterol synthesis, in lactating and in adult MFP2 knockout mice. In accordance, the rate of cholesterol biosynthesis was significantly increased in liver of knockout mice but the hepatic cholesterol concentration was unaltered. In MFP2/PPAR alpha double knockout mice, up-regulations of SREBP2 and HMGCR were markedly attenuated. These data demonstrate a tight interrelationship between induction of PPAR alpha by endogenous ligands and up-regulation of genes of cholesterol biosynthesis through increased expression of SREBP2.
Assuntos
17-Hidroxiesteroide Desidrogenases/fisiologia , Modelos Animais de Doenças , Enoil-CoA Hidratase/fisiologia , Fígado/metabolismo , Complexos Multienzimáticos/fisiologia , PPAR alfa/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 2/biossíntese , Animais , Western Blotting , Células Cultivadas , Colesterol/biossíntese , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/metabolismo , Lactação , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , PPAR alfa/genética , Proteína Multifuncional do Peroxissomo-2 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Regulação para CimaRESUMO
BACKGROUND: The contribution of individual organs to the whole-body adaptive response to fasting has not been established. Hence, gene-expression profiling, pathway, network and gene-set enrichment analysis and immunohistochemistry were carried out on mouse liver after 0, 12, 24 and 72 hours of fasting. RESULTS: Liver wet weight had declined approximately 44, approximately 5, approximately 11 and approximately 10% per day after 12, 24, 48 and 72 hours of fasting, respectively. Liver structure and metabolic zonation were preserved. Supervised hierarchical clustering showed separation between the fed, 12-24 h-fasted and 72 h-fasted conditions. Expression profiling and pathway analysis revealed that genes involved in amino-acid, lipid, carbohydrate and energy metabolism responded most significantly to fasting, that the response peaked at 24 hours, and had largely abated by 72 hours. The strong induction of the urea cycle, in combination with increased expression of enzymes of the tricarboxylic-acid cycle and oxidative phosphorylation, indicated a strong stimulation of amino-acid oxidation peaking at 24 hours. At this time point, fatty-acid oxidation and ketone-body formation were also induced. The induction of genes involved in the unfolded-protein response underscored the cell stress due to enhanced energy metabolism. The continuous high expression of enzymes of the urea cycle, malate-aspartate shuttle, and the gluconeogenic enzyme Pepck and the re-appearance of glycogen in the pericentral hepatocytes indicate that amino-acid oxidation yields to glucose and glycogen synthesis during prolonged fasting. CONCLUSION: The changes in liver gene expression during fasting indicate that, in the mouse, energy production predominates during early fasting and that glucose production and glycogen synthesis become predominant during prolonged fasting.
Assuntos
Jejum/fisiologia , Perfilação da Expressão Gênica , Fígado/metabolismo , Animais , Metabolismo dos Carboidratos/genética , Privação de Alimentos/fisiologia , Expressão Gênica , Metabolismo dos Lipídeos , Glicogênio Hepático/genética , Glicogênio Hepático/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Estresse OxidativoRESUMO
BACKGROUND: Mutations in the gene encoding the nucleotide-binding oligomerization domain 2 (NOD2) protein are associated with Crohn's disease (CD), but the mechanism underlying this is not completely understood. To study the mechanism of CD resulting from NOD2 mutations, we analyzed NOD2-dependent whole-genome expression profiles of patient-derived antigen-presenting cells. PATIENTS AND METHODS: Monocyte-derived dendritic cells (DCs) from CD carriers of double-dose NOD2 mutations, wild-type CD patients, and wild-type healthy volunteers were stimulated with the NOD2 ligand muramyl dipeptide. Whole-genome microarrays were used to assess the differential gene expression. The clustering of significantly changed genes was analyzed by online gene ontology mapping software. RESULTS: In the DCs from the wild-type CD patient group, 683 genes were significantly changed, with most of the genes clustering in the pathways of inflammatory response. In addition, a significant number of genes clustered in the apoptosis regulation-related pathway. In the DCs from the healthy volunteer group, only 50 genes were significantly changed, predominantly those belonging to the response to pathogen pathway. Analysis of differentially expressed gene ontology pathways in the DCs from the NOD2 mutant CD patient group showed that the transcription of pathogen response genes was absent. In this group, 298 genes were significantly changed, predominantly clustering in the negative apoptosis regulation and cell organization and biogenesis pathways. CONCLUSIONS: Our results suggest that NOD2 mutations may result in perpetuation of mucosal inflammation through insufficient pathogen elimination. Further, these observations implicate a possible role of defective regulation of dendritic cell apoptosis in CD pathogenesis.
Assuntos
Doença de Crohn/genética , Células Dendríticas/metabolismo , Mutação , Proteína Adaptadora de Sinalização NOD2/genética , Acetilmuramil-Alanil-Isoglutamina , Adjuvantes Imunológicos , Apoptose/genética , Estudos de Casos e Controles , Células Cultivadas , Doença de Crohn/imunologia , Perfilação da Expressão Gênica , Humanos , Família Multigênica/genética , Proteína Adaptadora de Sinalização NOD2/imunologia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Análise de Sequência com Séries de OligonucleotídeosRESUMO
Cadmium (Cd) is a widespread, naturally occurring element present in soil, rock, water, plants and animals. Cd is a non-essential element for plants and is toxic at higher concentrations. Transcript profiles of roots of Arabidopsis thaliana (Arabidopsis) and Thlaspi caerulescens plants exposed to Cd and zinc (Zn) are examined, with the main aim to determine the differences in gene expression between the Cd-tolerant Zn-hyperaccumulator T. caerulescens and the Cd-sensitive non-accumulator Arabidopsis. This comparative transcriptional analysis emphasized the role of genes involved in lignin, glutathione and sulphate metabolism. Furthermore the transcription factors MYB72 and bHLH100 were studied for their involvement in metal homeostasis, as they showed an altered expression after exposure to Cd. The Arabidopsis myb72 knockout mutant was more sensitive to excess Zn or iron (Fe) deficiency than wild type, while Arabidopsis transformants overexpressing bHLH100 showed increased tolerance to high Zn and nickel (Ni) compared to wild-type plants, confirming their role in metal homeostasis in Arabidopsis.
Assuntos
Arabidopsis/efeitos dos fármacos , Cádmio/farmacologia , Glutationa/metabolismo , Lignina/metabolismo , Sulfatos/metabolismo , Thlaspi/efeitos dos fármacos , Arabidopsis/metabolismo , Cádmio/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Ferro/metabolismo , Ferro/farmacologia , Níquel/metabolismo , Níquel/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Thlaspi/metabolismo , Transcrição Gênica/efeitos dos fármacos , Zinco/metabolismo , Zinco/farmacologiaRESUMO
OBJECTIVE: Pelvic lymph node metastases are the main prognostic factor for survival in early stage cervical cancer, yet accurate detection methods before surgery are lacking. In this study, we examined whether gene expression profiling can predict the presence of lymph node metastasis in early stage squamous cell cervical cancer before treatment. In addition, we examined gene expression in cervical cancer compared to normal cervical tissue. METHODS: Tumour samples of 35 patients with early stage cervical cancer who underwent radical hysterectomy and pelvic lymph node dissection, 16 with and 19 without lymph node metastasis, were analysed. Also five normal cervical tissues samples were analysed. We investigated differential expression and prediction of patient status for lymph node positive versus lymph node negative tumours and for healthy versus cancer tissue. Classifiers were built by using a multiple validation strategy, enabling the assessment of both classifier accuracy and variability. RESULTS: Five genes (BANF1, LARP7, SCAMP1, CUEDC1 and PEBP1) showed differential expression between tumour samples from patients with and without lymph node metastasis. Mean accuracy of class prediction is 64.5% with a 95% confidence interval (CI) of 40-90%. For healthy cervical tissue versus early stage cervical cancer, the mean accuracy of class prediction is 99.5% (95% CI of 90-100%). A subset of genes involved in cervical cancer was identified. CONCLUSION: No accurate class prediction for lymph node status in early stage cervical cancer was obtained. Replication studies are needed to determine the relevance of the differentially expressed genes according to lymph node status. Early stage cervical cancer can be perfectly differentiated from healthy cervical tissue by means of gene expression profiling.
Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Linfonodos/patologia , Biópsia de Linfonodo Sentinela , Neoplasias do Colo do Útero/genética , Adulto , Idoso , Carcinoma de Células Escamosas/patologia , Estudos de Casos e Controles , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Metástase Linfática/diagnóstico , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Pelve/patologia , Valor Preditivo dos Testes , RNA/análise , Neoplasias do Colo do Útero/patologiaRESUMO
Industrial biotechnology develops and applies microorganisms for the production of bioproducts and enzymes with applications ranging from food and feed ingredients and processing to bio-based chemicals, biofuels and pharmaceutical products. Next generation DNA sequencing technologies play an increasingly important role in improving and accelerating microbial strain development for existing and novel bio-products via screening, gene and pathway discovery, metabolic engineering and additional optimization and understanding of large-scale manufacturing. In this mini-review, we describe novel DNA sequencing and analysis technologies with a focus on applications to industrial strain development, enzyme discovery and microbial community analysis.