RESUMO
The biogeography of neotropical fungi remains poorly understood. Here, we reconstruct the origins and diversification of neotropical lineages in one of the largest clades of ectomycorrhizal fungi in the globally widespread family Russulaceae. We inferred a supertree of 3285 operational taxonomic units, representing worldwide internal transcribed spacer sequences. We reconstructed biogeographic history and diversification and identified lineages in the Neotropics and adjacent Patagonia. The ectomycorrhizal Russulaceae have a tropical African origin. The oldest lineages in tropical South America, most with African sister groups, date to the mid-Eocene, possibly coinciding with a boreotropical migration corridor. There were several transatlantic dispersal events from Africa more recently. Andean and Central American lineages mostly have north-temperate origins and are associated with North Andean uplift and the general north-south biotic interchange across the Panama isthmus, respectively. Patagonian lineages have Australasian affinities. Diversification rates in tropical South America and other tropical areas are lower than in temperate areas. Neotropical Russulaceae have multiple biogeographic origins since the mid-Eocene involving dispersal and co-migration. Discontinuous distributions of host plants may explain low diversification rates of tropical lowland ectomycorrhizal fungi. Deeply diverging neotropical fungal lineages need to be better documented.
Assuntos
Basidiomycota , Micorrizas , Micorrizas/genética , Filogenia , Filogeografia , América do SulRESUMO
Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.
Assuntos
Micorrizas , Solo , Animais , Biodiversidade , Ecossistema , Florestas , Fungos , Humanos , Plantas , Microbiologia do SoloRESUMO
This work describes the development of a novel method for quantitative mapping of Hg and Se in mushroom fruit body tissues with laser ablation coupled to inductively coupled plasma-mass spectrometry (LA-ICP-MS). Different parameters of the protocol for preparation of the standards used for quantification via external calibration were assessed, e.g., the dissolution temperature of gelatin standards and the addition of chitosan and L-cysteine as additives to the gelatin-based calibration droplets to better match the sample matrix. While chitosan was not suited for this purpose, the presence of L-cysteine considerably improved the figures of merit of the calibration, leading to limits of detection of 0.006 and 0.3 µg g-1 for Hg and Se, respectively, at a pixel size of 20 × 20 µm. Further, an in-house reference material, ideally suited for the validation of the method for application to mushroom samples, was successfully prepared from a paste of Boletus edulis. The newly developed method was used to investigate the distribution of Hg and Se in tissue sections of five porcini mushroom individuals of three different species (Boletus edulis, Boletus aereus, and Boletus pinophilus) and one sample of a parasol mushroom (Macrolepiota procera). For one sample, additional areas were ablated at higher spatial resolution, with a laser spot size down to 5 µm, which allows a detailed investigation of the spatial distribution of Hg and Se in mushrooms.
Assuntos
Agaricales , Terapia a Laser , Mercúrio , Selênio , Basidiomycota , Cisteína , Frutas/química , Gelatina , Humanos , Espectrometria de Massas/métodos , Mercúrio/análise , Selênio/análiseRESUMO
Trentepohliales are a group of both free-living and lichenized algae, with most diversity occurring in tropical regions. Recent studies showed that the abundance of lichens with a trentepohlioid photobiont has been increasing in temperate habitats, probably because of global warming, which makes them an interesting study case. A detailed molecular study of the diversity of lichenized Trentepohliales, epiphytic as well as epilithic, was performed in three forests of north-western Europe. Additional samples of lichens of the Arthoniales order (associating essentially with a trentepohlioid photobiont) from other European regions and from other continents were also sequenced. A total of 195 algal sequences were obtained. Phylogenetic analyses with rbcL and ITS loci were performed and associations between phylogenetic distances of photobionts and ecological factors (substratum, climate or Wirth indices, mycobiont taxonomy, and geographic location) were tested by variation partitioning and phylogenetic signal analyses. The high number of rbcL algal haplotypes found in some lichens or on different substrata revealed that the Trentepohliales diversity in extratropical regions was underestimated. The phylogenetic patterns showed selectivity of some photobionts in their fungal partner choice and vice-versa, while others were linked with several haplotypes. Photobionts seemed to be less selective than mycobionts. The main factors influencing lichenized algal community were climate and mycobiont species. Coevolution between mycobionts and photobionts as well as switching between free living and lichenized lifestyles appeared to drive the evolution of Trentepohliales and might explain the high cryptic diversity observed, which might be changing in some regions due to climate change.
Assuntos
Clorófitas , Líquens , Clorófitas/genética , Ecossistema , Líquens/genética , Filogenia , SimbioseRESUMO
Species of Russula subsect. Xerampelinae are notoriously difficult to identify and name and have not been subject to molecular study. A group of species, referred to here as the R. clavipes complex, growing in association with Salix, Betula and Populus as well as coniferous tree species from temperate to arctic and alpine habitats, were examined. Analyses of the nuc rDNA internal transcribed spacer (ITS) region and a numerical analysis of morphological characters were used. The R. clavipes complex is a monophyletic group within Russula subsect. Xerampelinae, according to molecular results. The complex includes three species: R. nuoljae is a phylogenetically and morphologically well-supported species while the other two, R. clavipes and R. pascua, are similar based on ITS data and morphology but separate based on their ecology. Russula pseudoolivascens is conspecific with R. clavipes Several combinations of characters traditionally used in the taxonomy of R. subsect. Xerampelinae are inappropriate for species delimitation in this group and the adequacy of the ITS for species identification in this group is discussed. Detailed microscopic observations on the type collection of R. nuoljae are presented and illustrated, along with a key to the European members of R. subsect. Xerampelinae.
Assuntos
Basidiomycota/classificação , Basidiomycota/citologia , Basidiomycota/genética , Basidiomycota/isolamento & purificação , Betula/microbiologia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Microscopia , Filogenia , Populus/microbiologia , Salix/microbiologia , Análise de Sequência de DNA , Traqueófitas/microbiologiaRESUMO
As a recent group mainly defined by molecular data the genus Lactifluus is in need of further study to provide insight into the morphological and molecular variation within the genus, species limits and relationships. Phylogenetic analyses of nuc rDNA ITS1-5.8S-ITS2 (ITS), D1 and D2 domains of nuc 28S rDNA (28S), and part of the second largest subunit of the RNA polymerase II (rpb2) (6-7 region) sequences of 28 samples from southern China revealed three new lineages of Lactifluus. Two of them are nested in a major clade that includes the type of Lactifluus and here is treated as two new sections: L. sect. Ambicystidiati and L. sect. Tenuicystidiati. Lactifluus ambicystidiatus, described here as a new species (= sect. Ambicystidiati), has both lamprocystidia and macrocystidia in the hymenium, a unique combination of features within Russulaceae. Furthermore, only remnants of lactiferous hyphae are present in L. ambicystidiatus and our results suggest that the ability to form a lactiferous system has been lost in this lineage. Lactifluus sect. Tenuicystidiati forms a strongly supported monophyletic group as a sister lineage to L. sect. Lactifluus. We recognize it based on the thin-walled macrocystidia and smaller ellipsoid spores with an incomplete reticulum compared with L. sect. Lactifluus. The former placement of L. tenuicystidiatus in the African L. sect. Pseudogymnocarpi is not supported. Using genealogical concordance we recognize five phylogenetic species within L. sect. Tenuicystidiati and describe two of these as new, L. subpruinosus and L. tropicosinicus. The third lineage, represented by L. leoninus, forms a sister group to L. subg. Lactariopsis sensu stricto. The three lineages provide further evidence for morphological features in Lactifluus being homoplasious. Some sections and species complexes are likely to be composed of more species and merit further investigations. Subtropical-tropical Asia is likely a key region for additional sampling.
Assuntos
Basidiomycota/genética , Carpóforos , Filogenia , China , DNA Fúngico/genética , Especificidade da EspécieRESUMO
Nanopore raw read accuracy has improved to over 99%, making it a potential tool for metabarcoding. For broad adoption, guidelines on quality filtering are needed to ensure reliable taxonomic unit recovery. This study aims to provide those guidelines for a fungal metabarcoding context and to apply them to a case study of ectomycorrhizae in the decaying bark of Fagus sylvatica. We introduce the eNano pipeline to test two standard metabarcoding approaches: (1) Reference-based mapping leveraging UNITE's species hypothesis system (SH approach); (2) Constructing 98% OTUs (OTU approach). Our results demonstrate that both approaches are effective with Nanopore data. When using a reference database, we recommend strict mapping criteria rather than Phred-based filtering. Leveraging the SH-system further enhances reproducibility and facilitates cross-study communication. For the 98% OTUs, filtering reads at ≥Q25 is recommended. Our case study reveals that the decay gradient is a primary determinant of community composition and that specific mycorrhizal fungi colonize decaying bark. Complementing our metabarcoding results with root tip morphotypification, we identify Laccaria amethystina and Tomentella sublilacina as key ectomycorrhizae of saplings on decaying logs. These findings demonstrate that Nanopore sequencing can provide valuable ecological insights and support its broader use in fungal metabarcoding as read quality continues to improve.
RESUMO
The fruitbodies or sporocarps formed by mushrooms can accumulate mineral elements, such as selenium, zinc or copper, making them an important source of micronutrients essential to humans. However, the literature about environmental factors affecting mineral composition in mushrooms is scarce and limited to the ambiguous impact of soil properties and region. In our study, we investigated the effects of tree stand characteristics (tree species and tree canopy cover), understory cover, and soil properties (pH and C/N ratio of the soil) on the concentration of minerals in six edible mushroom species: Laccaria laccata, L. proxima, L. amethystina, Lepista nuda, Lycoperdon perlatum, and Calvatia excipuliformis, collected on 20 plots covered by stands of different tree species composition and varying in the understory cover. We estimated the concentration of eight elements (Zn, Se, Mg, Mn, Cu, Co, Cr, Mo) using the ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) technique and compared their concentration between the plots, using ordination and linear regression methods. Our research revealed that mushroom species identity, including its ecological role and phylogenetic affinity, had the greatest effect on the mineral composition of mushrooms. The effect of environmental factors depended also on the micronutrient identity. Some elements were not affected at all (Co, Cr), some only by soil reaction or C/N ratio (Mn, Mg, Cu), while others were influenced by both tree stand characteristics and soil properties (Se, Zn, Mo). This knowledge enables us to maximize the content of minerals in harvested mushrooms by collecting them in specific areas. For example, mushrooms, which are sources of Se and Zn, can be gathered in coniferous forests characterized by acid soils, low canopy cover, and minimal understory cover. This targeted collection approach can effectively increase the mineral content in harvested mushrooms, thereby enhancing their health benefits.
RESUMO
Fungal conservation is gaining momentum globally, but many challenges remain. To advance further, more data are needed on fungal diversity across space and time. Fundamental information regarding population sizes, trends, and geographic ranges is also critical to accurately assess the extinction risk of individual species. However, obtaining these data is particularly difficult for fungi due to their immense diversity, complex and problematic taxonomy, and cryptic nature. This paper explores how citizen science (CS) projects can be lever-aged to advance fungal conservation efforts. We present several examples of past and ongoing CS-based projects to record and monitor fungal diversity. These include projects that are part of broad collecting schemes, those that provide participants with targeted sampling methods, and those whereby participants collect environmental samples from which fungi can be obtained. We also examine challenges and solutions for how such projects can capture fungal diversity, estimate species absences, broaden participation, improve data curation, and translate resulting data into actionable conservation measures. Finally, we close the paper with a call for professional mycologists to engage with amateurs and local communities, presenting a framework to determine whether a given project would likely benefit from participation by citizen scientists.
RESUMO
Fungi are diverse organisms that occupy important niches in natural settings and agricultural settings, acting as decomposers, mutualists, and parasites and pathogens. Interactions between fungi and other organisms, specifically invertebrates, are understudied. Their numbers are also severely underestimated. Invertebrates exist in many of the same spaces as fungi and are known to engage in fungal feeding or mycophagy. This review aims to provide a comprehensive, global view of mycophagy in invertebrates to bring attention to areas that need more research, by prospecting the existing literature. Separate searches on the Web of Science were performed using the terms "mycophagy" and "fungivore". Invertebrate species and corresponding fungal species were extracted from the articles retrieved, whether the research was field- or laboratory-based, and the location of the observation if field-based. Articles were excluded if they did not list at least a genus identification for both the fungi and invertebrates. The search yielded 209 papers covering seven fungal phyla and 19 invertebrate orders. Ascomycota and Basidiomycota are the most represented fungal phyla whereas Coleoptera and Diptera make up most of the invertebrate observations. Most field-based observations originated from North America and Europe. Research on invertebrate mycophagy is lacking in some important fungal phyla, invertebrate orders, and geographic regions.
RESUMO
The Neotropics have recently emerged as an important region for studies of tropical ectomycorrhizal (ECM) fungi. Specific neotropical areas with high ECM host tree densities have ECM fungal diversities rivaling those of higher-latitude forests. Some forests of the Guiana Shield are dominated by endemic ECM trees of the Fabaceae, including species of Dicymbe (subfam. Detarioideae), Aldina (subfam. Papilionoideae), and Pakaraimaea (Cistaceae). One of the most species-rich ECM fungal families present in each of these systems is Russulaceae. Long-term sampling in forests in Guyana's Pakaraima Mountains has revealed a number of species of the Russulaceae genera Lactarius, Lactifluus, and Russula. In this study, we document a previously unknown, distinct lineage of Lactarius subg. Plinthogalus containing eight species from the Guiana Shield. Here, we describe five of these species from Guyana as new to science: Lactarius humiphilus, Lactarius mycenoides, Lactarius guyanensis, Lactarius dicymbophilus, and Lactarius aurantiolamellatus. Morphological descriptions, habit, habitat, and known distribution are provided for each new species. Sequence data for the barcode internal transcribed spacer (ITS) locus are provided for types and most other collections of the new taxa, and a molecular phylogenetic analysis based on the ITS, 28S, and RPB2 (second-largest subunit of the RNA polymerase II) loci across the genus Lactarius corroborates their morphology-based infrageneric placement. The discovery of this lineage changes our insights into the biogeography and evolutionary history of Lactarius subg. Plinthogalus.
Assuntos
Agaricales , Basidiomycota , Fabaceae , Micorrizas , Humanos , Guiana , Filogenia , DNA Fúngico/genética , Agaricales/genética , Micorrizas/genética , Fabaceae/microbiologiaRESUMO
This paper describes and illustrates five new species of Gloeandromyces (Ascomycota, Laboulbeniales) associated with tropical American bat flies (Diptera, Streblidae). These are Gloeandromyces cusucoensis sp. nov. from Trichobius uniformis in Costa Rica and Honduras, G. diversiformis sp. nov. from Strebla wiedemanni in Costa Rica, G. plesiosaurus sp. nov. from Trichobius yunkeri in Panama, G. pseudodickii sp. nov. from Trichobius longipes in Ecuador and Panama, and G. verbekeniae sp. nov. from Strebla galindoi in Ecuador and Panama. The description of these five species doubles the number of known species in the genus. Morphological characteristics, host association, and a three-locus (18S nuc rDNA, 28S nuc rDNA, TEF1) phylogenetic reconstruction support placement of these taxa in the genus Gloeandromyces. Three of the new species are polymorphic; they have multiple morphotypes that grow in specific positions on the host integument: G. diversiformis f. diversiformis, f. musiformis, and f. vanillicarpiformis; G. plesiosaurus f. asymmetricus and f. plesiosaurus; and G. verbekeniae f. verbekeniae and f. inflexus. Finally, a dichotomous key to all species and morphotypes is presented.
Assuntos
Ascomicetos , Dípteros , Animais , Filogenia , Ascomicetos/genética , Panamá , DNA Ribossômico/genéticaRESUMO
How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes.
Assuntos
Ecossistema , Solo , Humanos , Fungos/genética , Filogenia , Microbiologia do Solo , BiodiversidadeRESUMO
The European species Lactarius subg. Plinthogalus were subjected to a molecular phylogenetic analysis based on ITS, LSU and rpb2 sequences. Morphological characters of the species are discussed in the light of the phylogenetic results. In addition to a broad sampling within Europe, some Asian and North American taxa also were included in the analysis. Eight European species are confirmed molecularly: L. lignyotus, L. acris, L. azonites, L. pterosporus, L. ruginosus, L. romagnesii, L. fuliginosus and L. picinus. Except the sibling species L. fuliginosus and L. picinus, all are morphologically distinct. Our results suggest that L. fuliginosus is associated exclusively with broadleaf trees and L. picinus with conifers, but this putative difference in host specificity needs to be investigated further. Lactarius subruginosus turns out to be a synonym of either L. pterosporus or L. ruginosus. The position of Lactarius terenopus remains to be clarified. The North American taxa that are closely related to the European L. lignyotus (L. fallax, L. lignyotus var. canadensis, var. nigroviolascens, var. marginatus) are not resolved. Intercontinental conspecificity was demonstrated between Europe and northern Asia but was not found between Europe and southern Asia or between Europe and North America. A taxonomic subdivision of L. subg. Plinthogalus based on the height of the spore ornamentation should be rejected.
Assuntos
Basidiomycota/classificação , Carpóforos/citologia , Especificidade de Hospedeiro , Filogenia , Ásia , Sequência de Bases , Basidiomycota/citologia , Basidiomycota/genética , Basidiomycota/isolamento & purificação , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Europa (Continente) , Carpóforos/classificação , Carpóforos/isolamento & purificação , Dados de Sequência Molecular , América do Norte , Filogeografia , RNA Polimerase II/genética , Análise de Sequência de DNA , Traqueófitas/microbiologia , Árvores/microbiologiaRESUMO
Dry dipterocarp forests are among the most common habitat types in Thailand. Russulaceae are known as common ectomycorrhizal symbionts of Dipterocarpaceae trees in this type of habitat. The present study aims to identify collections of Russula subsection Amoeninae Buyck from dry dipterocarp forests in Thailand. A multi-locus phylogenetic analysis placed Thai Amoeninae collections in two novel lineages, and they are described here as R. bellissima sp. nov. and R. luteonana sp. nov. The closest identified relatives of both species were sequestrate species suggesting that they may belong to drought-adapted lineages. An analysis of publicly available ITS sequences in R. subsect. Amoeninae did not confirm evidence of any of the new species occurring in other Asian regions, indicating that dry dipterocarp forests might harbor a novel community of ectomycorrhizal fungi. Macromorphological characters are variable and are not totally reliable for distinguishing the new species from other previously described Asian Amoeninae species. Both new species are defined by a combination of differentiated micromorphological characteristics in spore ornamentation, hymenial cystidia and hyphal terminations in the pileipellis. The new Amoeninae species may correspond to some Russula species collected for consumption in Thailand, and the detailed description of the new species can be used for better identification of edible species and food safety in the region.
Assuntos
Basidiomycota/genética , DNA Fúngico/isolamento & purificação , Dipterocarpaceae/genética , Filogenia , Basidiomycota/classificação , DNA Fúngico/genética , Dipterocarpaceae/classificação , Ecossistema , Florestas , Micorrizas/classificação , Micorrizas/genética , Tailândia , Clima TropicalRESUMO
About 90% of all land plants form mycorrhiza to facilitate the acquisition of essential nutrients such as phosphorus, nitrogen, and sometimes carbon. Based on the morphology of the interaction and the identity of the interacting plants and fungi, four major mycorrhizal types have been distinguished: arbuscular mycorrhiza (AM), ectomycorrhizal (EcM), ericoid mycorrhiza, and orchid mycorrhiza. Although most plants are assumed to form only one type of mycorrhiza, some species simultaneously form associations with two mycorrhizal types within a single root system. However, the dual-mycorrhizal status of many species is under discussion and in some plant species the simultaneous association with two mycorrhizal types varies in space or time or depends on the ecological context. Here, we assessed the mycorrhizal communities associating with common hawthorn (Crataegus monogyna), a small tree that commonly associates with AM fungi, and investigated the potential factors that underlie variation in mycorrhizal community composition. Histological staining of C. monogyna roots showed the presence of a Hartig net and hyphal sheaths in and around the roots, demonstrating the capacity of C. monogyna to form EcM. Meta-barcoding of soil and root samples of C. monogyna collected in AM-dominated grassland vegetation and in mixed AM + EcM forest vegetation showed a much higher number of EcM sequences and OTUs in root and soil samples from mixed AM + EcM vegetation than in samples from pure AM vegetation. We conclude that C. monogyna is able to form both AM and EcM, but that the extent to which it does depends on the environmental context, i.e., the mycorrhizal type of the surrounding vegetation.
RESUMO
Russula albonigra is considered a well-known species, morphologically delimited by the context of the basidiomata blackening without intermediate reddening, and the menthol-cooling taste of the lamellae. It is supposed to have a broad ecological range and a large distribution area. A thorough molecular analysis based on four nuclear markers (ITS, LSU, RPB2 and TEF1-α) shows this traditional concept of R. albonigra s. lat. represents a species complex consisting of at least five European, three North American, and one Chinese species. Morphological study shows traditional characters used to delimit R. albonigra are not always reliable. Therefore, a new delimitation of the R. albonigra complex is proposed and a key to the described European species of R. subgen. Compactae is presented. A lectotype and an epitype are designated for R. albonigra and three new European species are described: R. ambusta, R. nigrifacta, and R. ustulata. Different thresholds of UNITE species hypotheses were tested against the taxonomic data. The distance threshold of 0.5% gives a perfect match to the phylogenetically defined species within the R. albonigra complex. Publicly available sequence data can contribute to species delimitation and increase our knowledge on ecology and distribution, but the pitfalls are short and low quality sequences.
RESUMO
Lactifluus (Pers.) Roussel is an ectomycorrhizal genus that was recently recognized to be distinct from the genus Lactarius. To date, 226 Lactifluus species have been reported worldwide. Misidentification of Lactifluus species is common because of intraspecific morphological variation, cryptic diversity, and the limited number of taxonomic keys available. Molecular data are indispensable for species delimitation; a multilocus phylogenetic analysis showed that most Asian Lactifluus species are not conspecific with morphologically similar species present on other continents. In particular, Korea has misused European and North American Lactifluus names. In this study, we evaluated the taxonomy of Lactifluus in Korea using both morphological and multilocus molecular (ITS, nrLSU, rpb1, and rpb2) data. We examined 199 Lactifluus specimens collected between 1980 and 2016, and a total of 24 species across the four Lactifluus subgenera were identified. All Korean species are distinct and clearly separated from European and North American species. Five taxa corresponded to previously described species from Asia and the remaining 19 taxa are confirmed as new species. Herein, we provide keys to the Korean Lactifluus species within their subgenera, molecular phylogenies, a summary of diversity, and detailed description of the new species.
RESUMO
Parasitism is one of the most diverse and abundant modes of life, and of great ecological and evolutionary importance. Notwithstanding, large groups of parasites remain relatively understudied. One particularly unique form of parasitism is hyperparasitism, where a parasite is parasitized itself. Bats (Chiroptera) may be parasitized by bat flies (Diptera: Hippoboscoidea), obligate blood-sucking parasites, which in turn may be parasitized by hyperparasitic fungi, Laboulbeniales (Ascomycota: Laboulbeniomycetes). In this study, we present the global tritrophic associations among species within these groups and analyze their host specificity patterns. Bats, bat flies, and Laboulbeniales fungi are shown to form complex networks, and sixteen new associations are revealed. Bat flies are highly host-specific compared to Laboulbeniales. We discuss possible future avenues of study with regard to the dispersal of the fungi, abiotic factors influencing the parasite prevalence, and ecomorphology of the bat fly parasites.
RESUMO
In this paper a procedure is established to identify spectral bands that show similar behavior in two-dimensional correlation spectra. Slice spectra of bands that are affected in a single spectral event are highly similar. It is shown that this can be used to simplify the interpretation of two-dimensional (2D) correlation diagrams. One functional group frequently gives rise to multiple spectral bands in a Raman spectrum. In such occasions, the sequential order rules assign a sequential order, which is invalid, to the changes in these bands. We therefore apply cluster analysis to the slice spectra of bands with intensity changes during the experiment. Results indicate that cluster analysis of selected slice spectra can help in the interpretation of 2D correlation spectra in an intuitive and graphical way. The procedure should be used together with the widely used sequential order rules to determine the order of spectral events. The procedure enabled us to reveal the reaction steps in two simulated datasets and a dataset that comprises Raman spectra of oxidating latex of Lactarius fluens (Basidiomycota, Fungi).