Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Bot ; 110(9): e16217, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37659092

RESUMO

PREMISE: The phenotype of hybrids between a crop and its wild or weed counterpart is usually intermediate and maladapted compared to that of their parents; however, hybridization has sometimes been associated with increased fitness, potentially leading to enhanced weediness and invasiveness. Since the ecological context and maternal genetic effects may affect hybrid fitness, they could influence the evolutionary outcomes of hybridization. Here, we evaluated the performance of first-generation crop-weed hybrids of Raphanus sativus and their parents in two contrasting ecological conditions. METHODS: Using experimental hybridization and outdoor common garden experiments, we assessed differences in time to flowering, survival to maturity, plant biomass, and reproductive components between bidirectional crop-weed hybrids and their parents in agrestal (wheat cultivation, fertilization, weeding) and ruderal (human-disturbed, uncultivated area) conditions over 2 years. RESULTS: Crop, weeds, and bidirectional hybrids overlapped at least partially during the flowering period, indicating a high probability of gene flow. Hybrids survived to maturity at rates at least as successful as their parents and had higher plant biomass and fecundity, which resulted in higher fitness compared to their parents in both environments, without any differences associated with the direction of the hybridization. CONCLUSIONS: Intraspecific crop-weed hybridization, regardless of the cross direction, has the potential to promote weediness in weedy R. sativus in agrestal and ruderal environments, increasing the chances for introgression of crop alleles into weed populations. This is the first report of intraspecific crop-weed hybridization in R. sativus.

2.
J Hered ; 113(3): 288-297, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35192723

RESUMO

Hybridization between crops and their wild relatives may promote the evolution of de-domesticated (feral) weeds. Wild sunflower (Helianthus annuus L.) is typically found in ruderal environments, but crop-wild hybridization may facilitate the evolution of weedy populations. Using 1 crop-specific mitochondrial marker (CMS-PET1) and 14 nuclear SSR markers, we studied the origin and genetic diversity of a recently discovered weedy population of sunflower (named BRW). Then, using a resurrection approach, we tested for rapid evolution of weedy traits (seed dormancy, herbicide resistance, and competitive ability) by sampling weedy and wild populations 10 years apart (2007 and 2017). All the weedy plants present the CMS-PET1 cytotype, confirming their feral origin. At the nuclear markers, BRW showed higher genetic diversity than the cultivated lines and low differentiation with one wild population, suggesting that wild hybridization increased their genetic diversity. We found support for rapid evolution towards higher seed dormancy, but not for higher competitive ability or herbicide resistance. Our results highlight the importance of seed dormancy during the earliest stages of adaptation and show that crop-wild hybrids can evolve quickly in agricultural environments.


Assuntos
Domesticação , Helianthus , Produtos Agrícolas/genética , Evolução Molecular , Variação Genética , Helianthus/genética , Dormência de Plantas/genética , Plantas Daninhas/genética
3.
Pest Manag Sci ; 79(3): 922-934, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36507604

RESUMO

Agricultural weeds descended from domesticated ancestors, directly from crops (endoferality) and/or from crop-wild hybridization (exoferality), may have evolutionary advantages by rapidly acquiring traits pre-adapted to agricultural habitats. Understanding the role of crops on the origin and evolution of agricultural weeds is essential to develop more effective weed management programs, minimize crop losses due to weeds, and accurately assess the risks of cultivated genes escaping. In this review, we first describe relevant traits of weediness: shattering, seed dormancy, branching, early flowering and rapid growth, and their role in the feralization process. Furthermore, we discuss how the design of "super-crops" can affect weed evolution. We then searched for literature documenting cases of agricultural weeds descended from well-domesticated crops, and describe six case studies of feral weeds evolved from major crops: maize, radish, rapeseed, rice, sorghum, and sunflower. Further studies on the origin and evolution of feral weeds can improve our understanding of the physiological and genetic mechanisms underpinning the adaptation to agricultural habitats and may help to develop more effective weed-control practices and breeding better crops. © 2022 Society of Chemical Industry.


Assuntos
Melhoramento Vegetal , Plantas Daninhas , Plantas Daninhas/genética , Fenótipo , Genes de Plantas , Produtos Agrícolas/genética
4.
Pest Manag Sci ; 74(7): 1600-1607, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29314549

RESUMO

BACKGROUND: Feral radish (Raphanus sativus L.) is a problematic weed that has become resistant to acetohydroxyacid synthase (AHAS) inhibitor herbicides due to the Trp574Leu mutation. An AHAS gene mutation that causes herbicide resistance may have negative pleiotropic effects on plant fitness. This study reports the effects of the Trp574Leu mutation on AHAS activity and reproductive traits of R. sativus. RESULTS: Eight of 17 feral radish accessions presented individuals resistant to metsulfuron-methyl at 0.5% to >90.0% and all the resistant individuals analyzed showed the Trp574Leu mutation. Without herbicide selection, the AHAS activity was 3.2-fold higher in the susceptible accession than in the resistant one. The resistant accession was >9000-fold more resistant to metsulfuron-methyl and imazethapyr than the susceptible accession. Under low intraspecific competition during two growing seasons, AHAS-resistant feral radish accessions showed 22-38% and 21-47% lower seed numbers and yield per plant than the susceptible accession. CONCLUSION: This is the first report of fitness cost associated with the AHAS Trp574Leu mutation in R. sativus populations. This fitness cost could reduce frequency of the resistant allele without herbicide selection. © 2018 Society of Chemical Industry.


Assuntos
Acetolactato Sintase/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Proteínas de Plantas/genética , Raphanus/genética , Acetolactato Sintase/metabolismo , Substituição de Aminoácidos , Sulfonatos de Arila/farmacologia , Mutação/genética , Ácidos Nicotínicos/farmacologia , Proteínas de Plantas/metabolismo , Raphanus/efeitos dos fármacos , Reprodução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA