RESUMO
Anthropogenic activities can be the source of saline solid wastes that need to be treated to reduce their salt load to meet the purposes of reuse, valorization or storage. In this context, chloride remediation can be achieved using high-salt accumulating plants. However, there is very limited information on the comparative potential of different species in the same environment, and only scarce data concerning their efficiency as a function of growth stage. In order to rationalize these selection criteria, three macrophytes i.e., common reed (Phragmites australis), sea rush (Juncus maritimus), and cattail (Typha latifolia), were cultivated at two growth stages (6-months old and 1-year old) for 65 days in Cl- spiked substrates (from 0 up to 24 NaCl). The plants' survival and potential capacity for removal of Cl- from substrates and accumulation in shoots were investigated. For the three studied species, mature and juvenile plants display a high tolerance to salinity. However, mature specimens with higher shoot biomass and Cl- contents are capable of greater chloride removal than juvenile plants. The sole exception is P. australis which displays just the same phytoremediation potential for both mature and juvenile specimens. Moreover, P. australis has the lowest potential when compared with other species, being 1.5 and 3 times lower than for J. maritimus and T. latifolia. When considering the plant growth and the shoot biomass production, chloride removal rates from the substrate point that mature J. maritimus should preferentially be used to design an operational chloride remediation system. The results highlight the relevance of considering the growth stage of plants used for Cl- removal. HIGHLIGHTS: 1) Mature and juvenile specimens of J. maritimus, P. australis, and T. latifolia have high salinity tolerance in solid media spiked up to 24 NaCl. 2) Mature plants have generally better Cl- removal and phytoremediation performances than juvenile specimens. 3) J. maritimus is the most effective species for chloride phytoremediation with high survival and high Cl- sequestration in shoots. 4) T. latifolia has high Cl- removal in shoots and good remediation capacities but also shows sign of stress. 5) P. australis shows low Cl- sequestration and is a poor candidate for chloride remediation from substrate.
Assuntos
Typhaceae , Biodegradação Ambiental , Biomassa , Cloretos , Plantas , Poaceae/química , Salinidade , Cloreto de Sódio/química , Typhaceae/químicaRESUMO
Along the 98 800 km2 Rhône catchment area, 3 million people depend on the river resource and its sustainability. Flow rate monitoring of the French rivers showed the importance of the Swiss part of the Rhône (measured at station 1), the Isere (station 2) and the Durance rivers (station 3) contribution into the Rhône downstream (station 4) during summer when other recharges are decreasing. While their contribution is only of 10-30 % during most of the year, those rivers could contribute to more than 60 % of the Rhône flow rate during the driest period. The current study aims at confirming the key role of Alpine rivers contribution to the Rhône downstream flow by investigating an alternative monitoring tool of high-altitude water contribution. As a suitable tracer of latitude and altitude especially in a contrasted morphology, such as the Rhône watershed, water stable isotopes can be relevant to trace the origin of the recharge contributing to the waterflow. This study is based on a full hydrological cycle survey of the Rhône downstream water isotopes signature complemented by the current flow rate monitoring program of the Alpine rivers. With a linear regression model between both parameters data, the current study evidences the relevance of using water isotope signature to trace the seasonal change of water's origin and evaluate the high altitude waters contribution (RQ AR) into the Rhône river downstream flow rate (δ2H = 26.0 x RQAR - 57.9 with R = 0.88, R2 = 0.79 and a p-value < 0.0001). It also confirms the key role of Alpine waters contribution to the Rhône River during summer with average value of 70 ± 6% and the importance to monitor the sustainability of their contribution in future drier period.
RESUMO
Aquatic plants commonly used in landscaping or as ornaments are subject to a growing worldwide market that is source of trade between countries which can induce the transfer of unwanted invasive alien plant species. To protect national biodiversity and economy, authorities promote the use of local markets without however providing the method to do so. This study deals with the feasibility of using Sr stable isotopes for discriminating the origin of aquatic plants at a worldwide scale. More than 15 aquatic plant species were collected from main producers in four countries (China, Hungary, Germany, France). Each plant was analysed for its 87Sr/86Sr ratio and the results are compared within samples from each producer and between countries. For a given produce, significant 87Sr/86Sr can be measured as a function of the plant species. However, at the scale of Europe, plants from different producers are almost isotopically identical with 87Sr/86Sr ratios of 0.71228 ± 218.10-5, 0.71116 ± 178.10-5 and 0.71066 ± 156.10-5 for France, Hungary and Germany, respectively. These values are clearly distinguishable from those measured in Chinese aquatic plants, which yield a mean 87Sr/86Sr ratio of 0.70591 ± 168.10-5. This Sr isotopic discrimination between European and Chinese aquatic plants is explained by the specific agricultural and hydrogeological environments of the producing countries. Indeed, the cycle of Sr in aquatic plants is studied here for the first time. Natural and anthropic materials of French origin were collected and characterized in terms of 87Sr/86Sr. Mixing models reveal that irrigation water is the main source of Sr for plants (35-85%). Clays from the substrate (4-38%) and fertilizers (5-19%) can also contribute, in proportions depending on the plant species. This model accounts for the small variations in 87Sr/86Sr ratios of species from the same producer and allows a discrimination between producers using different agricultural practices.
RESUMO
At present, some triazine herbicides occurrence in European groundwater, 13 years after their use ban in the European Union, remains of great concern and raises the question of their persistence in groundwater systems due to several factors such as storage and remobilization from soil and unsaturated zone, limited or absence of degradation, sorption in saturated zones, or to continuing illegal applications. In order to address this problem and to determine triazine distribution in the saturated zone, their occurrence is investigated in the light of the aquifer hydrodynamic on the basis of a geochemical approach using groundwater dating tracers (3H/3He). In this study, atrazine, simazine, terbuthylazine, deethylatrazine, deisopropylatrazine, and deethylterbuthylazine are measured in 66 samples collected between 2011 and 2013 from 21 sampling points, on the Vistrenque shallow alluvial aquifer (southern France), covered by a major agricultural land use. The frequencies of quantification range from 100 to 56 % for simazine and atrazine, respectively (LQ = 1 ng L-1). Total triazine concentrations vary between 15 and 350 ng L-1 and show three different patterns with depth below the water table: (1) low concentrations independent of depth but related to water origin, (2) an increase in concentrations with depth in the aquifer related to groundwater residence time and triazine use prior to their ban, and (3) relatively high concentrations at low depths in the saturated zone more likely related to a slow desorption of these compounds from the soil and unsaturated zone. The triazine attenuation rate varies between 0.3 for waters influenced by surface water infiltration and 4.8 for water showing longer residence times in the aquifer, suggesting an increase in these rates with water residence time in the saturated zone. Increasing triazine concentrations with depth is consistent with a significant decrease in the use of these pesticides for the last 10 years on this area and highlights the efficiency of their ban.
Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Herbicidas/análise , Resíduos de Praguicidas/análise , Triazinas/análise , Poluentes Químicos da Água/análise , Agricultura , Atrazina/análogos & derivados , Atrazina/análise , França , Simazina/análise , Análise EspacialRESUMO
The lack of a geographical identification protocol for olive oils can lead to fraud and health risks. As some works call for Sr isotopes for the geographical identification of agri-food products, this study focus on the feasibility of extracting Sr from olive oils for isotopic measurements by TIMS. In fact, existing protocols for purification of Sr are unsuitable for lipid matrix. The defined protocol is applied to samples of PDO Nîmes olive oil. The accuracy of the extraction procedure is tested against isotopic standards. The values obtained are in conformity with NIST certified values. This consistency demonstrates that no modification of (87)Sr/(86)Sr ratio is brought about by this protocol. Consequently, the method is preliminary used on PDO Nîmes and Moroccan oils to evaluate the feasibility of a discriminant Sr signature on the two geographical products. This study provides promising results for the geographical discrimination and identification of PDO olive oils.
Assuntos
Azeite de Oliva/química , Estrôncio/análise , Análise de Alimentos , França , Geografia , Isótopos/química , Lipídeos/química , Marrocos , Azeite de Oliva/classificação , Reprodutibilidade dos TestesRESUMO
Arsenic contamination of stream waters and groundwater is a real issue in Au-As mine environments. At the Salsigne Au-As mine, southern France, arsenic contamination persists after closure and remediation of the site. In this study, natural and anthropogenic arsenic inputs in surface water and groundwater are identified based on (87)Sr/(86)Sr, and δ(18)O and δ(2)H isotopic composition of water. In the wet season, downstream of the remediated zone, the arsenic contents in stream water and alluvial aquifer groundwater are high, with values in the order of 36 µg/L and 40 µg/L respectively, while upstream natural background average concentrations are around 4 µg/L. Locally down-gradient of the reclaimed area, arsenic concentrations in stream water showed 2 peaks, one during an important rainy event (101 mm) in the wet season in May, and a longer one over the dry period, reaching 120 and 110 µg/L respectively. The temporal variations in arsenic content in stream water can be explained i) during the dry season, by release of arsenic stored in the alluvial sediments through increased contribution from base flow and decreased stream flow and ii) during major rainy events, by mobilization of arsenic associated with important surface runoff. The (87)Sr/(86)Sr ratios associated with increasing arsenic content in stream waters downstream of the reclaimed area are significantly lower than that of the natural Sr inherited from Variscan formations. These low (87)Sr/(86)Sr ratios are likely to be associated with the decontaminating water treatment processes, used in the past and still at present, where CaO, produced from marine limestone and therefore showing a low (87)Sr/(86)Sr ratios, is used to precipitate Ca3(AsO4)2. The low Sr isotope signatures will then impact on the Sr isotope ratio of (1) the Ca-arsenate stored in tailing dams, (2) effluent currently produced by water treatment process and (3) groundwater draining from the overall site. Furthermore, Δ(2)H shows that the low (87)Sr/(86)Sr ratio, arsenic rich water is characterized by an evaporated signature suggesting a potential influence of water impacted by evaporation during storage in decantation lagoons. This study shows the suitability of Sr and stable isotopes of water as tracers to differentiate natural and anthropogenic sources of arsenic release or other trace elements from mining context where CaO is used for water treatment.