Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2403581121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968108

RESUMO

Adverse cardiac outcomes in COVID-19 patients, particularly those with preexisting cardiac disease, motivate the development of human cell-based organ-on-a-chip models to recapitulate cardiac injury and dysfunction and for screening of cardioprotective therapeutics. Here, we developed a heart-on-a-chip model to study the pathogenesis of SARS-CoV-2 in healthy myocardium established from human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and a cardiac dysfunction model, mimicking aspects of preexisting hypertensive disease induced by angiotensin II (Ang II). We recapitulated cytopathic features of SARS-CoV-2-induced cardiac damage, including progressively impaired contractile function and calcium handling, apoptosis, and sarcomere disarray. SARS-CoV-2 presence in Ang II-treated hearts-on-a-chip decreased contractile force with earlier onset of contractile dysfunction and profoundly enhanced inflammatory cytokines compared to SARS-CoV-2 alone. Toward the development of potential therapeutics, we evaluated the cardioprotective effects of extracellular vesicles (EVs) from human iPSC which alleviated the impairment of contractile force, decreased apoptosis, reduced the disruption of sarcomeric proteins, and enhanced beta-oxidation gene expression. Viral load was not affected by either Ang II or EV treatment. We identified MicroRNAs miR-20a-5p and miR-19a-3p as potential mediators of cardioprotective effects of these EVs.


Assuntos
Angiotensina II , COVID-19 , Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , SARS-CoV-2 , Humanos , Angiotensina II/farmacologia , COVID-19/virologia , COVID-19/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/virologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Vesículas Extracelulares/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Apoptose/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , MicroRNAs/metabolismo , MicroRNAs/genética , Citocinas/metabolismo
2.
Small ; 20(27): e2309270, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38431940

RESUMO

The lower respiratory tract is a hierarchical network of compliant tubular structures that are made from extracellular matrix proteins with a wall lined by an epithelium. While microfluidic airway-on-a-chip models incorporate the effects of shear and stretch on the epithelium, week-long air-liquid-interface culture at physiological shear stresses, the circular cross-section, and compliance of native airway walls have yet to be recapitulated. To overcome these limitations, a collagen tube-based airway model is presented. The lumen is lined with a confluent epithelium during two-week continuous perfusion with warm, humid air while presenting culture medium from the outside and compensating for evaporation. The model recapitulates human small airways in extracellular matrix composition and mechanical microenvironment, allowing for the first time dynamic studies of elastocapillary phenomena associated with regular breathing and mechanical ventilation, as well as their impacts on the epithelium. A case study reveales increasing damage to the epithelium during repetitive collapse and reopening cycles as opposed to overdistension, suggesting expiratory flow resistance to reduce atelectasis. The model is expected to promote systematic comparisons between different clinically used ventilation strategies and, more broadly, to enhance human organ-on-a-chip platforms for a variety of tubular tissues.


Assuntos
Colágeno , Células Epiteliais , Humanos , Células Epiteliais/citologia , Colágeno/química , Dispositivos Lab-On-A-Chip
3.
Langmuir ; 38(1): 79-85, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34928624

RESUMO

This paper describes on-the-fly physical property changes of aqueous two-phase systems (ATPS) in microfluidic devices. The properties and phases of the ATPS are modulated on-demand by using a centrifugal microfluidic device filled with poly(ethylene glycol) (PEG) and dextran (DEX) solutions. By use of the centrifugal force and active pneumatic controls provided by a centrifugal microfluidic platform (CMP), PEG-DEX mixtures are manipulated and processed inside simple thermoplastic microfluidic devices. First, we experimentally demonstrate an on-chip ATPS transition from two phases to a single phase and vice versa by dynamically changing the concentration of the solution to bring ATPS across the binodal curve. We also demonstrate a density modulation scheme by introducing an ATPS solution mixed with sodium diatrizoate hydrate, which allows to increase the liquid density. By adding precisely metered volumes of water, we spontaneously change the density of the solution on the CMP and show that density marker microbeads fall into the solution according to their corresponding densities. The measured densities of ATPS show a good agreement with densities of microbeads and analytical plots. The results presented in this paper highlight the tremendous potential of CMPs for performing complex on-chip processing of ATPS. We anticipate that this method will be useful in applications such as microparticle-based plasma protein analysis and blood cell fractionation.


Assuntos
Microfluídica , Água , Dispositivos Lab-On-A-Chip , Microesferas , Polietilenoglicóis
4.
Analyst ; 146(24): 7491-7502, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34643195

RESUMO

We investigate the formation of suspended magnetic nanoparticle (MNP) assemblies (M-clouds) and their use for in situ bacterial capture and DNA extraction. M-clouds are obtained as a result of magnetic field density variations when magnetizing an array of micropillars coated with a soft ferromagnetic NiP layer. Numerical simulations suggest that the gradient in the magnetic field created by the pillars is four orders of magnitude higher than the gradient generated by the external magnets. The pillars therefore serve as the sole magnetic capture sites for MNPs which accumulate on opposite sides of each pillar facing the magnets. Composed of loosely aggregated MNPs, the M-cloud can serve as a porous capture matrix for target analyte flowing through the array. The concept is demonstrated by using a multifunctional M-cloud comprising immunomagnetic NPs (iMNPs) for capture of Escherichia coli O157:H7 from river water along with silica-coated NPs for subsequent isolation and purification of microbial DNA released upon bacterial lysis. Confocal microscopy imaging of fluorescently labeled iMNPs and E. coli O157:H7 reveals that bacteria are trapped in the M-cloud region between micropillars. Quantitative assessment of in situ bacterial capture, lysis and DNA isolation using real-time polymerase chain reaction shows linear correlation between DNA output and input bacteria concentration, making it possible to confirm E. coli 0157:H7 at 103 cells per mL. The M-cloud method further provides one order of magnitude higher DNA output concentrations than incubation of the sample with iMNPs in a tube for an equivalent period of time (e.g., 10 min). Results from assays performed in the presence of Listeria monocytogenes (at 106 cells per mL each) suggest that non-target organisms do not affect on-chip E. coli capture, DNA extraction efficiency and quality of the eluted sample.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Nanopartículas de Magnetita , DNA , Escherichia coli O157/genética , Separação Imunomagnética
5.
Analyst ; 146(13): 4226-4234, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34095908

RESUMO

DNA hybridization phenomena occurring on solid supports are not understood as clearly as aqueous phase hybridizations and mathematical models cannot predict some empirically obtained results. Ongoing research has identified important parameters but remains incomplete to accurately account for all interactions. It has previously been shown that the length of the overhanging (dangling) end of the target DNA strand following hybridization to the capture probe is correlated to interactions with the complementary strand in solution which can result in unbinding of the target and its release from the surface. We have developed an instrument for real-time monitoring of DNA hybridization on spherical particles functionalized with oligonucleotide capture probes and arranged in the form of a tightly packed monolayer bead bed inside a microfluidic cartridge. The instrument is equipped with a pneumatic module to mediate displacement of fluid on the cartridge. We compared this system to both conventional (passive) and centrifugally-driven (active) microfluidic microarray hybridization on glass slides to establish performance levels for the detection of single nucleotide polymorphisms. The system was also used to study the effect of the dangling end's length in real-time when the immobilized target DNA is exposed to the complementary strand in solution. Our findings indicate that increasing the length of the dangling end leads to desorption of target amplicons from bead-bound capture probes at a rate approaching that of the initial hybridization process. Finally, bead bed hybridization was performed with Streptococcus agalactiae cfb gene amplicons obtained from randomized clinical samples, which allowed for identification of group B streptococci within 5-15 min. The methodology presented here is useful for investigating competitive hybridization mechanisms on solid supports and to rapidly validate the suitability of microarray capture probes.


Assuntos
DNA , Microfluídica , DNA/genética , Sondas de DNA/genética , Hibridização de Ácido Nucleico , Sondas de Oligonucleotídeos/genética
6.
Anal Chem ; 92(11): 7738-7745, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32292034

RESUMO

We describe the use of periodic micropillar arrays, produced from cyclic olefin copolymer using high-fidelity microfabrication, as templates for colorimetric DNA detection. The assay involves PCR-amplified gene markers for E. coli O157:H7 (rfbO157, eae, vt1, and vt2) incorporating a detectable digoxigenin label, which is revealed through an immunoenzymatic process following hybridization with target-specific oligonucleotide capture probes. The capacity of micropillar arrays to induce wicking is used to distribute and confine capture probes with spatial control, making it possible to achieve a uniform signal while allowing multiple, independent probes to be arranged in close proximity on the same substrate. The kinetic profile of color pigment formation on the surface was followed using absorbance measurements, showing maximum signal increase between 20 and 60 min of reaction time. The relationship between microstructure and colorimetric signal was investigated through variation of geometric parameters, such as pitch (10-50 µm), pillar diameter (5-40 µm), and height (16-48 µm). Our findings suggest that signal intensity is largely influenced by the edges of the pillars and less by their height such that it deviates from a linear relationship when both aspect ratio and pillar density become very high. A theoretical model used to simulate the changes in surface composition at the molecular level suggests that differences in the temporal and spatial accumulation of assay components account for this observation.


Assuntos
Colorimetria , DNA Bacteriano/análise , Polímeros/química , DNA Bacteriano/genética , Escherichia coli O157/genética , Reação em Cadeia da Polimerase Multiplex
7.
Biomed Microdevices ; 22(2): 29, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32318839

RESUMO

Chronic kidney disease (CKD) typically evolves over many years in a latent period without clinical signs, posing key challenges to detection at relatively early stages of the disease. Accurate and timely diagnosis of CKD enable effective management of the disease and may prevent further progression. However, long turn-around times of current testing methods combined with their relatively high cost due to the need for established laboratory infrastructure, specialized instrumentation and trained personnel are drawbacks for efficient assessment and monitoring of CKD, especially in underserved and resource-poor locations. Among the emerging clinical laboratory approaches, microfluidic technology has gained increasing attention over the last two decades due to the possibility of miniaturizing bioanalytical assays and instrumentation, thus potentially improving diagnostic performance. In this article, we review current developments related to the detection of CKD biomarkers using microfluidics. A general trend in this emerging area is the search for novel, sensitive biomarkers for early detection of CKD using technology that is improved by means of microfluidics. It is anticipated that these innovative approaches will be soon adopted and utilized in both clinical and point-of-care settings, leading to improvements in life quality of patients.


Assuntos
Rim/metabolismo , Dispositivos Lab-On-A-Chip , Insuficiência Renal Crônica/metabolismo , Biomarcadores/metabolismo , Humanos
8.
Langmuir ; 36(47): 14333-14341, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33179927

RESUMO

We present new observations of aqueous two-phase system (ATPS) thermodynamic and interfacial phenomena that occur inside sessile droplets due to water evaporation. Sessile droplets that contain polymeric solutions, which are initially in equilibrium in a single phase, are observed at their three-phase liquid-solid-air contact line. As evaporation of a sessile droplet proceeds, we find that submicron secondary water-in-water (W/W) droplets emerge spontaneously at the edges of the mother sessile droplet due to the resulting phase separation from water evaporation. To understand this phenomenon, we first study the secondary W/W droplet formation process on different substrate materials, namely, glass, polycarbonate (PC), thermoplastic elastomer (TPE), poly(dimethylsiloxane)-coated glass slide (PDMS substrate), and Teflon-coated glass slide (Teflon substrate), and show that secondary W/W droplet formation arises only in lower-contact-angle substrates near the three-phase contact line. Next, we characterize the size of the emergent secondary W/W droplets as a function of time. We observe that W/W drops are formed, coalesced, aligned, and trapped along the contact line of the mother droplet. We demonstrate that this W/W multiple emulsion system can be used to encapsulate magnetic particles and blood cells, and achieve size-based separation. Finally, we show the applicability of this system for protein sensing. This is the first experimental observation of evaporation-induced secondary W/W droplet generation in a sessile droplet. We anticipate that the phenomena described here may be applicable to some biological assay applications, for example, biomarker detection, protein sensing, and point-of-care diagnostic testing.

9.
Analyst ; 145(21): 6831-6845, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33005914

RESUMO

The development of technology for the rapid, automated identification of bacterial culture isolates can help regulatory agencies to shorten response times in food safety surveillance, compliance, and enforcement as well as outbreak investigations. While molecular methods such as polymerase chain reaction (PCR) enable the identification of microbial organisms with high sensitivity and specificity, they generally rely on sophisticated instrumentation and elaborate workflows for sample preparation with an undesirably high level of hands-on engagement. Herein, we describe the design, operation and performance of a lab-on-a-chip system integrating thermal lysis, PCR amplification and microarray hybridization on the same cartridge. The assay is performed on a centrifugal microfluidic platform that allows for pneumatic actuation of liquids during rotation, making it possible to perform all fluidic operations in a fully-automated fashion without the need for integrating active control elements on the microfluidic cartridge. The cartridge, which is fabricated from hard and soft thermoplastic polymers, is compatible with high-volume manufacturing (e.g., injection molding). Chip design and thermal interface were both optimized to ensure efficient heat transfer and allow for fast thermal cycling during the PCR process. The integrated workflow comprises 14 steps and takes less than 2 h to complete. The only manual steps are related to loading of the sample and reagents on the cartridge as well as fluorescence imaging of the microarray. On-chip lysis and PCR amplification both provided results comparable to those obtained by bench-top instrumentation. The microarray, incorporating a panel of oligonucleotide probes for multiplexed detection of seven enterohemorrhagic E. coli priority serotypes, was implemented on a cyclic olefin copolymer substrate using a novel activation scheme that involves the conversion of hydroxyl groups (derived from oxygen plasma treatment) into reactive cyanate ester using cyanogen bromide. On-chip hybridization was demonstrated in a non-quantitative fashion using fluorescently-labelled gene markers for E. coli O157:H7 (rfbO157, eae, vt1, and vt2) obtained through a multiplexed PCR amplification step.


Assuntos
Escherichia coli Êntero-Hemorrágica , Dispositivos Lab-On-A-Chip , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos
10.
Analyst ; 144(22): 6541-6553, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31633134

RESUMO

Epigenetic markers attract increasing attention for the study of phenotypic variations, which has led to the investigation of cell-lineage DNA methylation patterns that correlate with human leukocyte populations for obtaining counts of white blood cell (WBC) subsets. Current methods of DNA methylation analysis involve genome sequencing or loci-specific quantitative PCR (qPCR). Herein, a multiplexed digital droplet PCR (ddPCR) workflow for determining epigenetic-based WBC differential count is described for the first time. A microfluidic emulsification device fabricated from a commercially available thermoplastic elastomer (e.g., Mediprene) promotes customizability and cost-effectiveness of the methodology, which are prerequisites for translation into clinical and point-of-care diagnostics. Bisulfite-treated DNA from peripheral blood mononuclear cells and whole blood is encapsulated in droplets with ddPCR reagents containing primers and fluorescent hydrolysis probes specific for CpG loci correlated with WBC sub-population types. The method enables multiplexed detection of various methylation sites within a single droplet. Both qPCR and immunofluorescence staining (IF) were conducted to validate the capacity of the ddPCR methodology to accurately determine WBC sub-populations using epigenetic analysis of methylation sites. ddPCR results correlated closely to cell proportions obtained using IF, whereas qPCR significantly underestimated these values for both high and low copy number gene targets.


Assuntos
DNA/análise , Contagem de Leucócitos/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Linfócitos T Reguladores/química , Ilhas de CpG , DNA/genética , Metilação de DNA , Elastômeros/química , Epigênese Genética , Humanos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
11.
Anal Chem ; 88(17): 8510-7, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27442305

RESUMO

Circulating tumor cells (CTCs) have been linked to cancer progression but are difficult to isolate, as they are very rare and heterogeneous, covering a range of sizes and expressing different molecular receptors. Filtration has emerged as a simple and powerful method to enrich CTCs but only captures cells above a certain size regardless of molecular characteristics. Here, we introduce antibody-functionalized microfilters to isolate CTCs based on both size and surface receptor expression. We present a 3D printed filtration cartridge with microfabricated polymer filters with 8, 10, 12, 15, or 20 µm-diameter pores. Pristine filters were used to optimize sample dilution, rinsing protocol, flow rate, and pore size, leading to >80% for the recovery of spiked cancer cells with very low white blood cell contamination (<1000). Then, filters were functionalized with antibodies against either epithelial cell adhesion molecule (EpCAM) or epidermal growth factor receptor (EGFR) and the cartridges were used to enrich breast (MDA-MB-231, MCF-7) and renal (786-O, A-498) cancer cells expressing various levels of EpCAM and EGFR. Cancer cells were spiked into human blood, and when using filters with antibodies specific to a molecular receptor expressed on a cell, efficiency was increased to >96%. These results suggest that filtration can be optimized to target specific CTC characteristics such as size and receptor expression and that a diverse range of CTCs may be captured using particular combinations of pore size, filtration parameters, and antibody functionalization.


Assuntos
Separação Celular/métodos , Filtração/métodos , Microtecnologia , Células Neoplásicas Circulantes/patologia , Anticorpos/imunologia , Voluntários Saudáveis , Humanos , Microscopia de Fluorescência , Microtecnologia/instrumentação , Células Neoplásicas Circulantes/imunologia , Polímeros/química , Células Tumorais Cultivadas
12.
Anal Chem ; 87(20): 10565-72, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26416260

RESUMO

We describe the translation of a cloth-based hybridization array system (CHAS), a colorimetric DNA detection method that is used by food inspection laboratories for colony screening of pathogenic agents, onto a microfluidic chip format. We also introduce an articulated centrifugal platform with a novel fluid manipulation concept based on changes in the orientation of the chip with respect to the centrifugal force field to time the passage of multiple components required for the process. The platform features two movable and motorized carriers that can be reoriented on demand between 0 and 360° during stage rotation. Articulation of the chip can be used to trigger on-the-fly fluid dispensing through independently addressable siphon structures or to relocate solutions against the centrifugal force field, making them newly accessible for downstream transfer. With the microfluidic CHAS, we achieved significant reduction in the size of the cloth substrate as well as the volume of reagents and wash solutions. Both the chip design and the operational protocol were optimized to perform the entire process in a reliable, fully automated fashion. A demonstration with PCR-amplified genomic DNA confirms on-chip detection and identification of Escherichia coli O157:H7 from colony isolates in a colorimetric multiplex assay using rfbO157, fliCH7, vt1, and vt2 genes.


Assuntos
Técnicas de Tipagem Bacteriana , Colorimetria/métodos , DNA Bacteriano/genética , Escherichia coli Êntero-Hemorrágica/isolamento & purificação , Técnicas Analíticas Microfluídicas , Hibridização de Ácido Nucleico , Técnicas de Tipagem Bacteriana/instrumentação , Centrifugação , DNA Bacteriano/análise , Escherichia coli Êntero-Hemorrágica/classificação , Escherichia coli Êntero-Hemorrágica/genética , Técnicas Analíticas Microfluídicas/instrumentação , Fatores de Tempo
13.
Appl Environ Microbiol ; 81(12): 3925-33, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25841016

RESUMO

The sensitivity and specificity of current Giardia cyst detection methods for foods are largely determined by the effectiveness of the elution, separation, and concentration methods used. The aim of these methods is to produce a final suspension with an adequate concentration of Giardia cysts for detection and a low concentration of interfering food debris. In the present study, a microfluidic device, which makes use of inertial separation, was designed and fabricated for the separation of Giardia cysts. A cyclical pumping platform and protocol was developed to concentrate 10-ml suspensions down to less than 1 ml. Tests involving Giardia duodenalis cysts and 1.90-µm microbeads in pure suspensions demonstrated the specificity of the microfluidic chip for cysts over smaller nonspecific particles. As the suspension cycled through the chip, a large number of beads were removed (70%) and the majority of the cysts were concentrated (82%). Subsequently, the microfluidic inertial separation chip was integrated into a method for the detection of G. duodenalis cysts from lettuce samples. The method greatly reduced the concentration of background debris in the final suspensions (10-fold reduction) in comparison to that obtained by a conventional method. The method also recovered an average of 68.4% of cysts from 25-g lettuce samples and had a limit of detection (LOD) of 38 cysts. While the recovery of cysts by inertial separation was slightly lower, and the LOD slightly higher, than with the conventional method, the sample analysis time was greatly reduced, as there were far fewer background food particles interfering with the detection of cysts by immunofluorescence microscopy.


Assuntos
Parasitologia de Alimentos/métodos , Giardia lamblia/isolamento & purificação , Alimentos , Giardia lamblia/ultraestrutura , Dispositivos Lab-On-A-Chip , Lactuca/parasitologia , Limite de Detecção , Técnicas Analíticas Microfluídicas , Microscopia de Fluorescência , Sensibilidade e Especificidade
14.
Biomed Microdevices ; 17(1): 17, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25653055

RESUMO

Detecting pathogenic bacteria in food or other biological samples with lab-on-a-chip (LOC) devices requires several sample preparation steps prior to analysis which commonly involves cleaning complex sample matrices of large debris. This often underestimated step is important to prevent these larger particles from clogging devices and to preserve initial concentrations when LOC techniques are used to concentrate or isolate smaller target microorganisms for downstream analysis. In this context, we developed a novel microfluidic system for membrane-free cleaning of biological samples from debris particles by combining hydrodynamic focusing and inertial lateral migration effects. The microfluidic device is fabricated using thermoplastic elastomers being compatible with thermoforming fabrication techniques leading to low-cost single-use devices. Microfluidic chip design and pumping protocols are optimized by investigating diffusive losses numerically with coupled Navier-Stokes and convective-diffusion theoretical models. Stability of inertial lateral migration and separation of debris is assessed through fluorescence microscopy measurements with labelled particles serving as a model system. Efficiency of debris cleaning is experimentally investigated by monitoring microchip outlets with in situ optical turbidity sensors, while retention of targeted pathogens (i.e., Listeria monocytogenes) within the sample stream is assessed through bacterial culture techniques. Optimized pumping protocols can remove up to 50 % of debris from ground beef samples while percentage for preserved microorganisms can account for 95 % in relatively clean samples. However, comparison between inoculated turbid and clean samples (i.e., with and without ground beef debris) indicate some degree of interference between debris inertial lateral migration and hydrodynamic focusing of small microorganisms. Although this interference can lead to significant decrease in chip performance through loss of target bacteria, it remains possible to reach 70 % for sample recovery and more than 50 % for debris removal even in the most turbid samples tested. Due to the relatively simple design, the robustness of the inertial migration effect itself, the high operational flow rates and fabrication methods that leverage low-cost materials, the proposed device can have an impact on a wide range of applications where high-throughput separation of particles and biological species is of interest.


Assuntos
Contaminação de Alimentos/análise , Microbiologia de Alimentos , Análise de Perigos e Pontos Críticos de Controle/métodos , Listeria monocytogenes , Técnicas Analíticas Microfluídicas , Microbiologia de Alimentos/instrumentação , Microbiologia de Alimentos/métodos , Listeria monocytogenes/citologia , Listeria monocytogenes/isolamento & purificação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
15.
Anal Bioanal Chem ; 407(18): 5541-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25935681

RESUMO

Legionellosis is a very devastating disease worldwide mainly due to unpredictable outbreaks in man-made water systems. Developing a highly specific and sensitive rapid detection system that detects only metabolically active bacteria is a main priority for water quality assessment. We previously developed a versatile technique for sensitive and specific detection of synthetic RNA. In the present work, we further investigated the performance of the developed biosensor for detection of Legionella pneumophila in complex environmental samples, particularly those containing protozoa. The specificity and sensitivity of the detection system were verified using total RNA extracted from L. pneumophila in spiked water co-cultured with amoebae. We demonstrated that the expression level of ribosomal RNA (rRNA) is extremely dependent on the environmental conditions. The presence of amoebae with L. pneumophila, especially in nutrition-deprived samples, increased the amount of L. pneumophila 15-fold after 1 week as measured through the expression of 16s rRNA. Using the developed surface plasmon resonance imaging (SPRi) detection method, we were also able to successfully detect L. pneumophila within 3 h, both in the presence and absence of amoebae in the complex environmental samples obtained from a cooling water tower. These findings suggest that the developed biosensing system is a viable method for rapid, real-time and effective detection not only for L. pneumophila in environmental samples but also to assess the risk associated with the use of water contaminated with other pathogens.


Assuntos
Legionella pneumophila/isolamento & purificação , Doença dos Legionários/microbiologia , Ressonância de Plasmônio de Superfície/métodos , Microbiologia da Água , Amoeba/isolamento & purificação , Desenho de Equipamento , Humanos , Legionella pneumophila/genética , Limite de Detecção , RNA Ribossômico 16S/genética , Ressonância de Plasmônio de Superfície/economia , Ressonância de Plasmônio de Superfície/instrumentação , Fatores de Tempo
16.
Bioact Mater ; 33: 46-60, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38024233

RESUMO

The successful translation of organ-on-a-chip devices requires the development of an automated workflow for device fabrication, which is challenged by the need for precise deposition of multiple classes of materials in micro-meter scaled configurations. Many current heart-on-a-chip devices are produced manually, requiring the expertise and dexterity of skilled operators. Here, we devised an automated and scalable fabrication method to engineer a Biowire II multiwell platform to generate human iPSC-derived cardiac tissues. This high-throughput heart-on-a-chip platform incorporated fluorescent nanocomposite microwires as force sensors, produced from quantum dots and thermoplastic elastomer, and 3D printed on top of a polystyrene tissue culture base patterned by hot embossing. An array of built-in carbon electrodes was embedded in a single step into the base, flanking the microwells on both sides. The facile and rapid 3D printing approach efficiently and seamlessly scaled up the Biowire II system from an 8-well chip to a 24-well and a 96-well format, resulting in an increase of platform fabrication efficiency by 17,5000-69,000% per well. The device's compatibility with long-term electrical stimulation in each well facilitated the targeted generation of mature human iPSC-derived cardiac tissues, evident through a positive force-frequency relationship, post-rest potentiation, and well-aligned sarcomeric apparatus. This system's ease of use and its capacity to gauge drug responses in matured cardiac tissue make it a powerful and reliable platform for rapid preclinical drug screening and development.

17.
Front Public Health ; 12: 1344295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784579

RESUMO

Objectives: The COVID-19 pandemic caused a global shortage of nasopharyngeal (NP) swabs, required for RT-PCR testing. Canadian manufacturers were contacted to share NP swab innovations. The primary objective was to determine whether novel NP test swabs were comparable to commercially available swabs regarding user characteristics, ability to collect a specimen, and diagnostic performance using RT-PCR testing. Methods: Participants were randomized by swab (test/control) and nostril (left/right). A calculated positive percent agreement ≥90% was considered successful. Mean Ct values of viral genes and housekeeping gene (RNase P) were considered similar if a Ct difference ≤ 2 between control and test group was obtained. There also was a qualitative assessment of swabs usability. Results: 647 participants were enrolled from Huaycan Hospital in Lima, Peru, distributed over 8 NP swabs brands. Seven brands agreed to share their results. There were no statistically significant differences between the test swabs of these 7 brands and control swabs. Conclusion: All the seven brands are comparable to the commercially available flocked swabs used for SARS-CoV-2 regarding test results agreement, ability to collect a specimen, and user characteristics.


Assuntos
COVID-19 , Nasofaringe , SARS-CoV-2 , Manejo de Espécimes , Humanos , COVID-19/diagnóstico , Manejo de Espécimes/métodos , Nasofaringe/virologia , Canadá , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Peru/epidemiologia , Pandemias , Teste de Ácido Nucleico para COVID-19/métodos , Adulto Jovem , Adolescente , Teste para COVID-19/métodos , Idoso
18.
Lab Chip ; 24(4): 668-679, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38226743

RESUMO

We describe a microfluidic system for conducting thermal lysis, polymerase chain reaction (PCR) amplification, hybridization, and colorimetric detection of foodborne viral organisms in a sample-to-answer format. The on-chip protocol entails 24 steps which are conducted by a centrifugal platform that allows for actuating liquids pneumatically during rotation and so facilitates automation of the workflow. The microfluidic cartridge is fabricated from transparent thermoplastic polymers and accommodates assay components along with an embedded micropillar array for detection and read-out. A panel of oligonucleotide primers and probes has been developed to perform PCR and hybridization assays that allows for identification of five different viruses, including pathogens such as norovirus and hepatitis A virus (HAV) in a multiplexed format using digoxigenin-labelled amplicons and immunoenzymatic conversion of a chromogenic substrate. Using endpoint detection, we demonstrate that the system can accurately and repetitively (n = 3) discriminate positive and negative signals for HAV at 350 genome copies per µL. As part of the characterization and optimization process, we show that the implementation of multiple (e.g., seven) micropillar arrays in a narrow fluidic pathway can lead to variation (up to 50% or more) in the distribution of colorimetric signal deriving from the assay. Numerical modeling of flow behaviour was used to substantiate these findings. The technology-by virtue of automation-can provide a pathway toward rapid detection of viral pathogens, shortening response time in food safety surveillance, compliance, and enforcement as well as outbreak investigations.


Assuntos
Colorimetria , Microfluídica , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Rotação
19.
Lab Chip ; 24(2): 182-196, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38044704

RESUMO

The intensive workload associated with the preparation of high-quality DNA libraries remains a key obstacle toward widespread deployment of sequencing technologies in remote and resource-limited areas. We describe the development of single-use microfluidic devices driven by an advanced pneumatic centrifugal microfluidic platform, the PowerBlade, to automate the preparation of Illumina-compatible libraries based on adaptor ligation methodology. The developed on-chip workflow includes enzymatic DNA fragmentation coupled to end-repair, adaptor ligation, first DNA cleanup, PCR amplification, and second DNA cleanup. This complex workflow was successfully integrated into simple thermoplastic microfluidic devices that are amenable to mass production with injection molding. The system was validated by preparing, on chip, libraries from a mixture of genomic DNA extracted from three common foodborne pathogens (Listeria monocytogenes, Escherichia coli and Salmonella enterica serovar Typhimurium) and comparing them with libraries made via a manual procedure. The two types of libraries were found to exhibit similar quality control metrics (including genome coverage, assembly, and relative abundances) and led to nearly uniform coverage independent of GC content. This microfluidic technology offers a time-saving and cost-effective alternative to manual procedures and robotic-based automation, making it suitable for deployment in remote environments where technical expertise and resources might be scarce. Specifically, it facilitates field practices that involve mid- to low-throughput sequencing, such as tasks related to foodborne pathogen detection, characterization, and microbial profiling.


Assuntos
Microfluídica , Salmonella typhimurium , DNA Bacteriano/genética , Salmonella typhimurium/genética , Escherichia coli/genética , Automação , Oligonucleotídeos
20.
Small ; 9(5): 654-9, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23456791

RESUMO

Single-walled carbon nanotubes are used as doping agents to form thermo-active composites with an elastomeric block-copolymer. Thermal imaging reveals that the temperature response upon irradiation with NIR laser light is dependent (among other things) on the mass fraction of the nanotubes in the polymer matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA