Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37762308

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disorder caused by the deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) and often leads to pulmonary infections caused by various pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and nontuberculous mycobacteria, particularly Mycobacterium abscessus. Unfortunately, M. abscessus infections are increasing in prevalence and are associated with the rapid deterioration of CF patients. The treatment options for M. abscessus infections are limited, requiring the urgent need to comprehend infectious pathogenesis and develop new therapeutic interventions targeting affected CF patients. Here, we show that the deficiency of CFTR reduces sphingosine levels in bronchial and alveolar epithelial cells and macrophages from CF mice and humans. Decreased sphingosine contributes to the susceptibility of CF tissues to M. abscessus infection, resulting in a higher incidence of infections in CF mice. Notably, treatment of M. abscessus with sphingosine demonstrated potent bactericidal activity against the pathogen. Most importantly, restoration of sphingosine levels in CF cells, whether human or mouse, and in the lungs of CF mice, provided protection against M. abscessus infections. Our findings demonstrate that pulmonary sphingosine levels are important in controlling M. abscessus infection. These results offer a promising therapeutic avenue for CF patients with pulmonary M. abscessus infections.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Humanos , Animais , Camundongos , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Esfingosina , Infecções por Mycobacterium não Tuberculosas/complicações , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Micobactérias não Tuberculosas
2.
Mycoses ; 65(4): 458-465, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35138651

RESUMO

BACKGROUND: COVID-19-associated invasive pulmonary aspergillosis (CAPA) is associated with increased mortality. Cases of CAPA caused by azole-resistant Aspergillus fumigatus strains have been reported. OBJECTIVES: To analyse the twelve-month CAPA prevalence in a German tertiary care hospital and to characterise clinical A. fumigatus isolates from two German hospitals by antifungal susceptibility testing and microsatellite genotyping. PATIENTS/METHODS: Retrospective observational study in critically ill adults from intensive care units with COVID-19 from 17 February 2020 until 16 February 2021 and collection of A. fumigatus isolates from two German centres. EUCAST broth microdilution for four azole compounds and microsatellite PCR with nine markers were performed for each collected isolate (N = 27) and additional for three non-COVID A. fumigatus isolates. RESULTS: welve-month CAPA prevalence was 7.2% (30/414), and the rate of azole-resistant A. fumigatus isolates from patients with CAPA was 3.7% with detection of one TR34/L98H mutation. The microsatellite analysis revealed no major clustering of the isolates. Sequential isolates mainly showed the same genotype over time. CONCLUSIONS: Our findings demonstrate similar CAPA prevalence to other reports and a low azole-resistance rate. Genotyping of A. fumigatus showed polyclonal distribution except for sequential isolates.


Assuntos
COVID-19 , Aspergilose Pulmonar , Adulto , Antifúngicos/farmacologia , Aspergillus fumigatus , Azóis/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Humanos , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana , Aspergilose Pulmonar/complicações , Aspergilose Pulmonar/epidemiologia
3.
Infect Immun ; 89(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33139382

RESUMO

Previous studies have shown that sphingosine kills a variety of pathogenic bacteria, including Pseudomonas aeruginosa and Staphylococcus aureus Sphingosine concentrations are decreased in airway epithelial cells of cystic fibrosis (CF) mice, and this defect has been linked to the infection susceptibility of these mice. Here, we tested whether the genetic overexpression of acid ceramidase rescues cystic fibrosis mice from pulmonary infections with P. aeruginosa We demonstrate that the transgenic overexpression of acid ceramidase in CF mice corresponds to the overexpression of acid ceramidase in bronchial and tracheal epithelial cells and normalizes ceramide and sphingosine levels in bronchial and tracheal epithelial cells. In addition, the expression of ß1-integrin, which is ectopically expressed on the luminal surface of airway epithelial cells in cystic fibrosis mice, an alteration that is very important for mediating pulmonary P. aeruginosa infections in cystic fibrosis, is normalized in cystic fibrosis airways upon the overexpression of acid ceramidase. Most importantly, the overexpression of acid ceramidase protects cystic fibrosis mice from pulmonary P. aeruginosa infections. Infection of CF mice or CF mice that inhaled sphingosine with P. aeruginosa or a P. aeruginosa mutant that is resistant to sphingosine indicates that sphingosine and not a metabolite kills P. aeruginosa upon pulmonary infection. These studies further support the use of acid ceramidase and its metabolite sphingosine as potential treatments of cystic fibrosis.


Assuntos
Ceramidase Ácida/genética , Ceramidase Ácida/farmacologia , Ceramidase Ácida/uso terapêutico , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Infecções por Pseudomonas/etiologia , Infecções por Pseudomonas/prevenção & controle , Animais , Fibrose Cística/fisiopatologia , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Modelos Animais , Pseudomonas aeruginosa/efeitos dos fármacos , Virulência/genética
4.
Mycoses ; 63(12): 1362-1367, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32885514

RESUMO

BACKGROUND: Commonly, the application of radiological and clinical criteria and the determination of galactomannan (GM) in respiratory samples are used as a diagnostic tool for the detection of invasive pulmonary aspergillosis (IPA). MATERIALS/METHODS: In this study, two lateral flow assays, OLM Aspergillus lateral flow device (LFD) and IMMY sona Aspergillus Galactomannan lateral flow assay (LFA), were evaluated at two tertiary hospitals in Germany. A total of 200 bronchoalveolar lavage (BAL) samples from patients with suspicion of IPA were analysed retrospectively. LFD and LFA were evaluated against four different criteria: Blot, EORTC/MSG, Schauwvlieghe and extended Blot criteria and additionally against GM. RESULTS: The evaluation of four algorithms for the diagnosis of IPA showed that there exist good diagnostic tools to rule out an IPA even before results of Aspergillus culture are available. Sensitivities and negative predictive values are generally higher for the LFA than for the LFD in all four criteria. Specificity and positive predictive values varied depending on the classification criteria. The total agreement between the GM and the LFA cube reader (cut-off = 1) was 84%. The correlation between the GM and LFA was calculated with r = 0.8. CONCLUSION: The here presented data indicate that a negative LFA result in BAL fluid can reliable rule out an IPA in a heterogeneous group of ICU patients based on the original Blot criteria. LFA seems to be a promising immunochromatographic test exhibiting a good agreement with positive GM values.


Assuntos
Antígenos de Fungos/análise , Aspergillus/química , Líquido da Lavagem Broncoalveolar/química , Cromatografia de Afinidade/métodos , Aspergilose Pulmonar Invasiva/diagnóstico , Algoritmos , Aspergillus/imunologia , Feminino , Galactose/análogos & derivados , Humanos , Imunoensaio , Masculino , Mananas/análise , Pessoa de Meia-Idade , Estudos Retrospectivos , Sensibilidade e Especificidade
5.
Mycoses ; 63(8): 823-831, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32449997

RESUMO

BACKGROUND: The number of invasive Candida infections has significantly increased in recent decades. For the successful treatment of fungal infections, rapid identification at the species level, particularly in polyfungal infections, is a key factor. In this study, four commercially available chromogenic media, CandiSelect™ 4 (CS4), chromID™ Candida Agar (CCA), BBL™ CHROMagar™ Candida Medium (BBL) and Brilliance™ Candida Agar (BCA) were evaluated for Candida identification. MATERIAL/METHODS: Overall, 181 bronchial secretion samples from intensive care patients were analysed prospectively. In addition, 18 primarily sterile materials, previously tested positive for Candida, were investigated retrospectively. All samples were cultured as recommended by the manufacturer and visually inspected after 24 and 48 hours by three independent investigators. As a control, colonies were identified by MALDI-TOF MS. Specificity and sensitivity were determined for C albicans identification prospectively. RESULTS: CS4 and BCA showed the best overall consensus with the identification results reached by MALDI-TOF MS for Candida albicans and species. A clear differentiation between the species could be ascertained via easily identifiable, species-specific coloration in contrast to BBL and CCA. Sensitivity for C albicans (n = 73) identification varied between 32% (BCA) and 69% (CS4 and CCA) after 24 hours and 68% (BBL) and 82% (BCA) after 48 hours incubation, while specificity ranged between 62% (BBL) and 81% (CCA) after 24 hours and 82% (BBL) and 85% (CS4) after 48 hours. CONCLUSION: CS4 and BCA are recommended for routine identification of Candida species in human samples.


Assuntos
Candida , Candidíase/diagnóstico , Técnicas de Tipagem Micológica/métodos , Candida/crescimento & desenvolvimento , Candida/isolamento & purificação , Candida albicans/crescimento & desenvolvimento , Candida albicans/isolamento & purificação , Humanos , Estudos Retrospectivos , Sensibilidade e Especificidade , Especificidade da Espécie
6.
Mycoses ; 62(6): 519-525, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30825344

RESUMO

BACKGROUND: Invasive fungal infections caused by filamentous fungi of the order Mucorales are serious complications in immunocompromised patients and often associated with fatal outcome. As a member of this order, Cunninghamella bertholletiae is a saprophytic fungus with naturally exhibited high minimum inhibitory concentrations against common antifungal drugs and with the potential for outbreaks in clinical settings. OBJECTIVES AND METHODS: In a proof-of-principle study, we evaluated the performance of microsatellite markers for the discrimination of thirteen C. bertholletiae isolates from various sources in comparison with a repetitive sequence-based PCR (rep-PCR) and random amplification of polymorphic DNA (RAPD). Based on the higher discriminatory power of the microsatellite PCR with five separate primer pairs (Simpson's index of 1 vs 0 [RAPD] and 0 [rep-PCR]), the novel method was applied to eight additional isolates, including four well-characterised isolates from a cluster of infections in a next step. RESULTS: In total, microsatellite PCR identified 21 separate genotypes. A probable epidemiological association of the cluster isolates could be demonstrated by microsatellite genotyping. CONCLUSION: In conclusion, our findings demonstrate the value of microsatellite PCR in genotyping Cunninghamella bertholletiae and its potential for future applications with other species of the order Mucorales.


Assuntos
Cunninghamella/classificação , Cunninghamella/genética , Técnicas de Genotipagem/métodos , Técnicas de Tipagem Micológica/métodos , Reação em Cadeia da Polimerase/métodos , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Repetições de Microssatélites
7.
Horm Metab Res ; 50(12): 932-941, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30107619

RESUMO

Experimental models of hyperthyroid Graves' disease (GD) and Graves' orbitopathy (GO) are efficiently developed by genetic immunisation by electroporation with human thyrotropin hormone receptor (hTSHR) A-subunit plasmid in female BALB/c (H-2d) mice. We investigated susceptibility in C57BL/6 J (H-2b) animals to allow studies on disease mechanisms in transgenic and immune response gene knock-out mice. Higher numbers of female C57BL/6 J were positive for pathogenic thyroid stimulating antibodies, but induced hyperthyroidism remained at a low frequency compared to BALB/c animals. Assessment of hTSHR specific T cells showed reduced proliferation in C57BL/6 J animals accompanied with anti-inflammatory IL-10, with less pro-inflammatory IFN-γ compared to BALB/c. Whilst the orbital tissue from immune BALB/c mice showed inflammation and adipogenesis, in contrast C57BL/6 J animals showed normal pathology. We characterised the gut microbiota using 16 S ribosomal RNA gene sequencing to explore its possible pathogenic role in the model. Despite being housed under identical conditions, we observed significantly different organisation of the microbiota (beta-diversity) in the two strains. Taxonomic differences were also noted, with C57BL/6 J showing an enrichment of Operational Taxonomic Units (OTUs) belonging to the Paludibacter and Allobaculum, followed by Limibacter, Anaerophaga and Ureaplasma genera. A higher number of genera significantly correlating with clinical features was observed in C57BL/6 J compared to BALB/c; for example, Limibacter OTUs correlated negatively with thyroid-stimulating antibodies in C57BL/6 J mice. Thus, our data suggest gut microbiota may play a pivotal immunomodulatory role that differentiates the thyroid function and orbital pathology outcome in these two inbred strains undergoing experimental GO.


Assuntos
Autoimunidade , Microbioma Gastrointestinal , Glândula Tireoide/imunologia , Glândula Tireoide/fisiopatologia , Animais , Proliferação de Células , Citocinas/metabolismo , Feminino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Órbita/patologia , Receptores da Tireotropina/metabolismo , Linfócitos T/metabolismo
8.
Diagnostics (Basel) ; 13(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37627977

RESUMO

The diagnosis of invasive pulmonary aspergillosis (IPA) in intensive care unit (ICU) patients is crucial since most clinical signs are not specific to invasive fungal infections. To detect an IPA, different criteria should be considered. Next to host factors and radiological signs, microbiological criteria should be fulfilled. For microbiological diagnostics, different methods are available. Next to the conventional culture-based approaches like staining and culture, non-culture-based methods can increase sensitivity and improve time-to-result. Besides fungal biomarkers, like galactomannan and (1→3)-ß-D-glucan as nonspecific tools, molecular-based methods can also offer detection of resistance determinants. The detection of novel biomarkers or targets is promising. In this review, we evaluate and discuss the value of non-culture-based microbiological methods (galactomannan, (1→3)-ß-D-glucan, Aspergillus PCR, new biomarker/targets) for diagnosing IPA in ICU patients.

9.
J Fungi (Basel) ; 9(5)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37233280

RESUMO

An altered gut microbiota is a possible contributing pathogenic factor in myasthenia gravis (MG), an autoimmune neuromuscular disease. However, the significance of the fungal microbiome is an understudied and neglected part of the intestinal microbiome in MG. We performed a sub-analysis of the MYBIOM study including faecal samples from patients with MG (n = 41), non-inflammatory neurological disorder (NIND, n = 18), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 6) and healthy volunteers (n = 12) by sequencing the internal transcribed spacer 2 (ITS2). Fungal reads were obtained in 51 out of 77 samples. No differences were found in alpha-diversity indices computed between the MG, NIND, CIDP and HV groups, indicating an unaltered fungal diversity and structure. Overall, four mould species (Penicillium aurantiogriseum, Mycosphaerella tassiana, Cladosporium ramonetellum and Alternaria betae-kenyensis) and five yeast species (Candida. albicans, Candida. sake, Candida. dubliniensis, Pichia deserticola and Kregervanrija delftensis) were identified. Besides one MG patient with abundant Ca. albicans, no prominent dysbiosis in the MG group of the mycobiome was found. Not all fungal sequences within all groups were successfully assigned, so further sub-analysis was withdrawn, limiting robust conclusions.

10.
J Clin Endocrinol Metab ; 108(8): 2065-2077, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36683389

RESUMO

CONTEXT: Gut bacteria can influence host immune responses but little is known about their role in tolerance-loss mechanisms in Graves disease (GD; hyperthyroidism caused by autoantibodies, TRAb, to the thyrotropin receptor, TSHR) and its progression to Graves orbitopathy (GO). OBJECTIVE: This work aimed to compare the fecal microbiota in GD patients, with GO of varying severity, and healthy controls (HCs). METHODS: Patients were recruited from 4 European countries (105 GD patients, 41 HCs) for an observational study with cross-sectional and longitudinal components. RESULTS: At recruitment, when patients were hyperthyroid and TRAb positive, Actinobacteria were significantly increased and Bacteroidetes significantly decreased in GD/GO compared with HCs. The Firmicutes to Bacteroidetes (F:B) ratio was significantly higher in GD/GO than in HCs. Differential abundance of 15 genera was observed in patients, being most skewed in mild GO. Bacteroides displayed positive and negative correlations with TSH and free thyroxine, respectively, and was also significantly associated with smoking in GO; smoking is a risk factor for GO but not GD. Longitudinal analyses revealed that the presence of certain bacteria (Clostridiales) at diagnosis correlated with the persistence of TRAb more than 200 days after commencing antithyroid drug treatment. CONCLUSION: The increased F:B ratio observed in GD/GO mirrors our finding in a murine model comparing TSHR-immunized with control mice. We defined a microbiome signature and identified changes associated with autoimmunity as distinct from those due to hyperthyroidism. Persistence of TRAb is predictive of relapse; identification of these patients at diagnosis, via their microbiome, could improve management with potential to eradicate Clostridiales.


Assuntos
Microbioma Gastrointestinal , Doença de Graves , Oftalmopatia de Graves , Hipertireoidismo , Humanos , Camundongos , Animais , Índigo Carmim/uso terapêutico , Estudos Transversais , Autoanticorpos , Receptores da Tireotropina , Hipertireoidismo/complicações
11.
Antibiotics (Basel) ; 11(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35203795

RESUMO

Stenotrophomonas maltophilia is increasingly recognized as a nosocomial bacterial pathogen with a multi-drug resistance profile. In this study, the novel drug gepotidacin, the first compound of the novel triazaacenaphthylene topoisomerase inhibitor antibiotics class, was evaluated on its activity against clinical S. maltophilia isolates. Ninety-nine S. maltophilia isolates plus reference strain K279a (N = 100) were tested on their susceptibility towards gepotidacin in a broth microdilution. Additional susceptibility testing was performed towards the commonly applied combination trimethoprim/sulfamethoxazole (TMP/SXT), moxifloxacin, and levofloxacin. The time-kill kinetic of gepotidacin was observed in a time-kill assay. The greater wax moth Galleria mellonella was used to determine the activity of gepotidacin against S. maltophilia in vivo. Gepotidacin showed minimum inhibitory concentrations (MICs) between 0.25 and 16 mg/L (MIC50: 2 mg/L; MIC90: 8 mg/L), independently of its susceptibility towards TMP/SXT. The five TMP/SXT resistant strains exhibited gepotidacin MICs from 1 to 4 mg/L. The S. maltophilia strains resistant to the assessed fluoroquinolones showed in parts high MICs of gepotidacin. The time-kill assay revealed a time- and strain-dependent killing effect of gepotidacin. In vivo, injection of gepotidacin increased the survival rate of the larvae from 61 % to 90 % after 2 days. This study showed antimicrobial effects of gepotidacin towards S. maltophilia.

12.
J Fungi (Basel) ; 8(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35330309

RESUMO

Due to Coronavirus disease (COVID-19) a new group of patients at risk emerged with COVID-19-associated mucormycosis (CAM). Systematic studies, evaluating the prevalence of CAM are missing. To assess CAM prevalence in a tertiary care hospital in Germany, we applied direct microscopy, fungal culture and quantitative realtime in-house PCR targeting Mucorales-specific fragments of 18S and 28S rRNA on respiratory specimens of 100 critically ill COVID-19 patients. Overall, one Mucorales-PCR positive bronchoalevolar lavage was found whereas direct microscopy and fungal culture were negative in all cases. We conclude that a routine screening for CAM in Germany is not indicated.

13.
Diagnostics (Basel) ; 12(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36553055

RESUMO

Superinfections with Aspergillus spp. in patients with Coronavirus disease 2019 (CAPA: COVID-19-associated pulmonary aspergillosis) are increasing. Dexamethasone has shown beneficial effects in critically ill COVID-19 patients. Whether dexamethasone increases the risk of CAPA has not been studied exclusively. Moreover, this retrospective study aimed to identify risk factors for a worse outcome in critically ill COVID-19 patients. Data from 231 critically ill COVID-19 patients with or without dexamethasone treatment from March 2020 and March 2021 were retrospectively analysed. Only 4/169 (6.5%) in the DEXA-group and 13/62 (7.7%) in the Non-DEXA group were diagnosed with probable CAPA (p = 0.749). Accordingly, dexamethasone was not identified as a risk factor for CAPA. Moreover, CAPA was not identified as an independent risk factor for death in multivariable analysis (p = 0.361). In contrast, elevated disease severity (as assessed by Sequential Organ Failure Assessment [SOFA]-score) and the need for organ support (kidney replacement therapy and extracorporeal membrane oxygenation [ECMO]) were significantly associated with a worse outcome. Therefore, COVID-19 treatment with dexamethasone did not increase the risk for CAPA. Moreover, adequately treated CAPA did not represent an independent risk factor for mortality. Accordingly, CAPA might reflect patients' severe disease state instead of directly influencing outcome.

14.
Ther Adv Neurol Disord ; 14: 17562864211035657, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394728

RESUMO

BACKGROUND: Myasthenia gravis (MG) is an autoimmune neuromuscular disease, with gut microbiota considered to be a pathogenetic factor. Previous pilot studies have found differences in the gut microbiota of patients with MG and healthy individuals. To determine whether gut microbiota has a pathogenetic role in MG, we compared the gut microbiota of patients with MG with that of patients with non-inflammatory and inflammatory neurological disorders of the peripheral nervous system (primary endpoint) and healthy volunteers (secondary endpoint). METHODS: Faecal samples were collected from patients with MG (n = 41), non-inflammatory neurological disorder (NIND, n = 18), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 6) and healthy volunteers (n = 12). DNA was isolated from these samples, and the variable regions of the 16S rRNA gene were sequenced and statistically analysed. RESULTS: No differences were found in alpha- and beta-diversity indices computed between the MG, NIND and CIDP groups, indicating an unaltered bacterial diversity and structure of the microbial community. However, the alpha-diversity indices, namely Shannon, Chao 1 and abundance-based coverage estimators, were significantly reduced between the MG group and healthy volunteers. Deltaproteobacteria and Faecalibacterium were abundant within the faecal microbiota of patients with MG compared with controls with non-inflammatory diseases. CONCLUSION: Although the overall diversity and structure of the gut microbiota did not differ between the MG, NIND and CIDP groups, the significant difference in the abundance of Deltaproteobacteria and Faecalibacterium supports the possible role of gut microbiota as a contributor to pathogenesis of MG. Further studies are needed to confirm these findings and to develop possible treatment strategies.

15.
Microbiome ; 9(1): 45, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593429

RESUMO

BACKGROUND: Graves' disease (GD) is an autoimmune condition in which autoantibodies to the thyrotropin receptor (TSHR) cause hyperthyroidism. About 50% of GD patients also have Graves' orbitopathy (GO), an intractable disease in which expansion of the orbital contents causes diplopia, proptosis and even blindness. Murine models of GD/GO, developed in different centres, demonstrated significant variation in gut microbiota composition which correlated with TSHR-induced disease heterogeneity. To investigate whether correlation indicates causation, we modified the gut microbiota to determine whether it has a role in thyroid autoimmunity. Female BALB/c mice were treated with either vancomycin, probiotic bacteria, human fecal material transfer (hFMT) from patients with severe GO or ddH2O from birth to immunization with TSHR-A subunit or beta-galactosidase (ßgal; age ~ 6 weeks). Incidence and severity of GD (TSHR autoantibodies, thyroid histology, thyroxine level) and GO (orbital fat and muscle histology), lymphocyte phenotype, cytokine profile and gut microbiota were analysed at sacrifice (~ 22 weeks). RESULTS: In ddH2O-TSHR mice, 84% had pathological autoantibodies, 67% elevated thyroxine, 77% hyperplastic thyroids and 70% orbital pathology. Firmicutes were increased, and Bacteroidetes reduced relative to ddH2O-ßgal; CCL5 was increased. The random forest algorithm at the genus level predicted vancomycin treatment with 100% accuracy but 74% and 70% for hFMT and probiotic, respectively. Vancomycin significantly reduced gut microbiota richness and diversity compared with all other groups; the incidence and severity of both GD and GO also decreased; reduced orbital pathology correlated positively with Akkermansia spp. whilst IL-4 levels increased. Mice receiving hFMT initially inherited their GO donors' microbiota, and the severity of induced GD increased, as did the orbital brown adipose tissue volume in TSHR mice. Furthermore, genus Bacteroides, which is reduced in GD patients, was significantly increased by vancomycin but reduced in hFMT-treated mice. Probiotic treatment significantly increased CD25+ Treg cells in orbital draining lymph nodes but exacerbated induced autoimmune hyperthyroidism and GO. CONCLUSIONS: These results strongly support a role for the gut microbiota in TSHR-induced disease. Whilst changes to the gut microbiota have a profound effect on quantifiable GD endocrine and immune factors, the impact on GO cellular changes is more nuanced. The findings have translational potential for novel, improved treatments. Video abstract.


Assuntos
Microbioma Gastrointestinal , Oftalmopatia de Graves/microbiologia , Animais , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Feminino , Oftalmopatia de Graves/imunologia , Oftalmopatia de Graves/metabolismo , Oftalmopatia de Graves/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C
16.
J Mol Med (Berl) ; 98(2): 209-219, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31863153

RESUMO

Periprosthetic infection (PPI) is a devastating complication in joint replacement surgery. On the background of an aging population, the number of joint replacements and associated complications is expected to increase. The capability for biofilm formation and the increasing resistance of different microbes to antibiotics have complicated the treatment of PPI, requiring the need for the development of alternative treatment options. The bactericidal effect of the naturally occurring amino alcohol sphingosine has already been reported. In our study, we demonstrate the antimicrobial efficacy of sphingosine on three different strains of biofilm producing Staphylococcus epidermidis, representing one of the most frequent microbes involved in PPI. In an in vitro analysis, sphingosine's capability for prevention and treatment of biofilm-contamination on different common orthopedic implant surfaces was tested. Coating titanium implant samples with sphingosine not only prevented implant contamination but also revealed a significant reduction of biofilm formation on the implant surfaces by 99.942%. When testing the antimicrobial efficacy of sphingosine on sessile biofilm-grown Staphylococcus epidermidis, sphingosine solution was capable to eliminate 99.999% of the bacteria on the different implant surfaces, i.e., titanium, steel, and polymethylmethacrylate. This study provides evidence on the antimicrobial efficacy of sphingosine for both planktonic and sessile biofilm-grown Staphylococcus epidermidis on contaminated orthopedic implants. Sphingosine may provide an effective and cheap treatment option for prevention and reduction of infections in joint replacement surgery. KEY MESSAGES: • Here we established a novel technology for prevention of implant colonization by sphingosine-coating of orthopedic implant materials. • Sphingosine-coating of orthopedic implants prevented bacterial colonization and significantly reduced biofilm formation on implant surfaces by 99.942%. • Moreover, sphingosine solution was capable to eliminate 99.999% of sessile biofilm-grown Staphylococcus epidermidis on different orthopedic implant surfaces.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Próteses e Implantes/microbiologia , Esfingosina/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Ácidos Polimetacrílicos , Staphylococcus epidermidis/fisiologia , Aço , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA