Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Earth Space Sci ; 8(3): e2020EA001429, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33791392

RESUMO

Significant polar topside total electron content (topTEC) enhancement (PTTE) above 1,336 km altitude is reported for the first time. The results are based on GPS measurements during 2008-2019 from NASA's Jason-2 satellite with zenith-oriented antennas. The observations show increasing topTEC toward the southern polar cap at geomagnetic latitudes poleward of 65°S, where TEC values are normally very low. A case study for the 2013 St. Patrick's Day storm indicates that the enhancement can exceed 5.5 TEC units above the dayside ambient state, corresponding to 78% increase. Comparisons with COSMIC/FORMOSAT-3 topTEC measurements above 800 km altitude confirm that PTTE events are observed from both Jason-2 and COSMIC on the same day. Our statistical analysis of the Jason-2 data in the southern polar region reveals that PTTE mostly occurs on the dayside, with a seasonal preference of southern summer, and preferentially during geomagnetically disturbed days but can also occur during quiet days. PTTE during storm days shows increased occurrence, magnitude, and deviation from the mean in the cusp region compared with quiet days. Our case analysis indicates that PTTE is observed simultaneously with the effect of tongue of ionization. This suggests that the during storms, dayside F region plasma moving poleward following the antisunward plasma convection may also be part of the PTTE source, and the plasma upflow driven by the polar wind may act to cause PTTE.

2.
Sci Rep ; 7: 46607, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28429754

RESUMO

It is well known that tsunamis can produce gravity waves that propagate up to the ionosphere generating disturbed electron densities in the E and F regions. These ionospheric disturbances can be studied in detail using ionospheric total electron content (TEC) measurements collected by continuously operating ground-based receivers from the Global Navigation Satellite Systems (GNSS). Here, we present results using a new approach, named VARION (Variometric Approach for Real-Time Ionosphere Observation), and estimate slant TEC (sTEC) variations in a real-time scenario. Using the VARION algorithm we compute TEC variations at 56 GPS receivers in Hawaii as induced by the 2012 Haida Gwaii tsunami event. We observe TEC perturbations with amplitudes of up to 0.25 TEC units and traveling ionospheric perturbations (TIDs) moving away from the earthquake epicenter at an approximate speed of 316 m/s. We perform a wavelet analysis to analyze localized variations of power in the TEC time series and we find perturbation periods consistent with a tsunami typical deep ocean period. Finally, we present comparisons with the real-time tsunami MOST (Method of Splitting Tsunami) model produced by the NOAA Center for Tsunami Research and we observe variations in TEC that correlate in time and space with the tsunami waves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA