Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genet ; 17(1): 106, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27407019

RESUMO

BACKGROUND: Presence of Kunitz trypsin inhibitor (KTI) in soybean seeds necessitates pre-heat treatment of the soy-flour for its inactivation before using it in food and feed products. The heat treatment not only enhances processing costs of the soy-based foods and feeds but also affects seed-protein quality and solubility. Genetic elimination of KTI is an important and effective approach. Therefore, molecular marker-assisted backcross breeding (MABB) approach was adopted for genetic elimination of KTI from two popular soybean genotypes, DS9712 and DS9814. PI542044, an exotic germplasm line was used as donor of the kti allele which inhibits functional KTI peptide production. RESULTS: Foreground selection for the kti allele was performed with three closely linked SSR markers while background selection was done with 93 polymorphic SSR markers. Plants in the BC1F1 generation were found to recover 70.4-87.63 % and 60.26-73.78 % of the recurrent parent genome (RPG) of DS9712 and DS9814, respectively. Similarly, selected plants in the BC2F1 generation had 93.01-98.92 % and 83.3-91.67 % recovery of their respective RPGs. Recombinant selection was performed so as to identify plants with minimal linkage drag. Biochemical analysis of the seeds of the selected plants (ktikti) confirmed absence of KTI peptides in the seeds. Phenotypically, the selected plants were comparable to the respective recurrent parent in yield and other traits. CONCLUSIONS: MABB approach helped in speedy development of 6 KTI free breeding lines of soybean. Such lines will be suitable for the farmers and the soybean industries to use in production of soy-based foods and feeds without pre-heat treatment of the soy-flour. It would contribute towards wider acceptability of soy-based foods and feeds.


Assuntos
Glycine max/genética , Endogamia/métodos , Inibidor da Tripsina de Soja de Kunitz/genética , Alelos , Deleção de Genes , Repetições de Microssatélites , Melhoramento Vegetal , Seleção Genética
2.
Genetica ; 143(1): 1-10, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25475043

RESUMO

Yellow Mosaic Virus (YMV) is a serious disease of soybean. Resistance to YMV was mapped in 180 soybean genotypes through association mapping approach using 121 simple sequence repeats (SSR) and four resistance gene analogue (RGA)-based markers. The association mapping population (AMP) (96 genotypes) and confirmation population (CP) (84 genotypes) was tested for resistance to YMV at hot-spot consecutively for 3 years (2007-2009). The genotypes exhibited significant variability for YMV resistance (P < 0.01). Molecular genotyping and population structure analysis with 'admixture' co-ancestry model detected seven optimal sub-populations in the AMP. Linkage disequilibrium (LD) between the markers extended up to 35 and 10 cM with r2 > 0.15, and >0.25, respectively. The 4 RGA-based markers showed no association with YMV resistance. Two SSR markers, Satt301 and GMHSP179 on chromosome 17 were found to be in significant LD with YMV resistance. Contingency Chi-square test confirmed the association (P < 0.01) and the utility of the markers was validated in the CP. It would pave the way for marker assisted selection for YMV resistance in soybean. This is the first report of its kind in soybean.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Glycine max/genética , Glycine max/virologia , Vírus do Mosaico , Doenças das Plantas/genética , Genes de Plantas , Estudos de Associação Genética , Ligação Genética , Marcadores Genéticos , Genética Populacional , Genótipo , Desequilíbrio de Ligação , Repetições de Microssatélites , Fenótipo , Polimorfismo Genético , Característica Quantitativa Herdável
3.
Protoplasma ; 251(3): 671-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24158377

RESUMO

Heme oxygenase1 (HO1) catalyzes the degradation of heme in to biliverdin, carbon monoxide, and ferrous ions. Its role in higher plants has been found as an antioxidant and precursor of phytochrome synthesis. The present study focuses on subcellular localization of HO1 in leaves of soybean has been investigated. Most activity appeared to be located within chloroplast due to its role in phytochrome synthesis but mitochondria also share its localization. Mitochondrial location of HO1 might be on its inner membranous space due to its role in the synthesis of electron donor species which facilitates HO1 catalyzed reaction. Study reports the co-localization of HO1 in both chloroplast and mitochondria.


Assuntos
Cloroplastos/metabolismo , Glycine max/enzimologia , Heme Oxigenase-1/metabolismo , Mitocôndrias/metabolismo , Proteínas de Plantas/metabolismo
4.
J Genet ; 93(3): 775-84, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25572236

RESUMO

The present study was carried out with a set of 96 diverse soybean genotypes with the objectives of analysing the population structure and to identify molecular markers associated with important agronomic traits. Large phenotypic variability was observed for the agronomic traits under study indicating suitability of the genotypes for association studies. The maximum values for plant height, pods per plant, seeds per pod, 100-seed weight and seed yield per plant were approximately two and half to three times more than the minimum values for the genotypes. Seed yield per plant was found to be significantly correlated with pods per plant (r = 0.77), 100-seed weight (r = 0.35) and days to maturity (r = 0.23). The population structure studies depicted the presence of seven subpopulations which nearly corresponded with the source of geographical origin of the genotypes. Linkage disequilibrium (LD) between the linked markers decreased with the increased distance, and a substantial drop in LD decay values was observed between 30 and 35 cM. Genomewide marker-traits association analysis carried out using general linear (GLM) and mixed linear models (MLM) identified six genomic regions (two of them were common in both) on chromosomes 6, 7, 8, 13, 15 and 17, which were found to be significantly associated with various important traits viz., plant height, pods per plant, 100-seed weight, plant growth habit, average number of seeds per pod, days to 50% flowering and days to maturity. The phenotypic variation explained by these loci ranged from 6.09 to 13.18% and 4.25 to 9.01% in the GLM and MLM studies, respectively. In conclusion, association mapping (AM) in soybean could be a viable alternative to conventional QTL mapping approach.


Assuntos
Genética Populacional , Estudo de Associação Genômica Ampla , Glycine max/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Produtos Agrícolas/genética , Flores/genética , Genoma de Planta , Genótipo , Desequilíbrio de Ligação , Fenótipo , Glycine max/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA