Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Brain Behav Immun ; 116: 126-139, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38016491

RESUMO

INTRODUCTION: A wide range of positive, negative, and cognitive symptoms compose the clinical presentation of schizophrenia. Schizophrenia is a multifactorial disorder in which genetic and environmental risk factors interact for a full emergence of the disorder. Infectious challenges during pregnancy are a well-known environmental risk factor for schizophrenia. Also, genetic variants affecting the function of fractalkine signaling between neurons and microglia were linked to schizophrenia. Translational animal models recapitulating these complex gene-environment associations have a great potential to untangle schizophrenia neurobiology and propose new therapeutic strategies. METHODS: Given that genetic variants affecting the function of fractalkine signaling between neurons and microglia were linked to schizophrenia, we compared the outcomes of a well-characterized model of maternal immune activation induced using the viral mimetic polyinosinic:polycytidylic acid (Poly I:C) in wild-type versus fractalkine receptor knockout mice. Possible behavioral and immune alterations were assessed in male and female offspring during adulthood. Considering the role of the hippocampus in schizophrenia, microglial analyses and bulk RNA sequencing were performed within this region to assess the neuroimmune dynamics at play. Males and females were examined separately. RESULTS: Offspring exposed to the dual challenge paradigm exhibited symptoms relevant to schizophrenia and unpredictably to mood disorders. Males displayed social and cognitive deficits related to schizophrenia, while females mainly presented anxiety-like behaviors related to mood disorders. Hippocampal microglia in females exposed to the dual challenge were hypertrophic, indicative of an increased surveillance, whereas those in males showed on the other end of the spectrum blunted morphologies with a reduced phagocytosis. Hippocampal bulk-RNA sequencing further revealed a downregulation in females of genes related to GABAergic transmission, which represents one of the main proposed causes of mood disorders. CONCLUSIONS: Building on previous results, we identified in the current study distinctive behavioral phenotypes in female mice exposed to a dual genetic and environmental challenge, thus proposing a new model of neurodevelopmentally-associated mood and affective symptoms. This paves the way to future sex-specific investigations into the susceptibility to developmental challenges using animal models based on genetic and immune vulnerability as presented here.


Assuntos
Microglia , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Camundongos , Feminino , Masculino , Animais , Quimiocina CX3CL1 , Poli I-C/farmacologia , Comportamento Animal/fisiologia , Perfilação da Expressão Gênica , Hipocampo , Modelos Animais de Doenças
2.
Brain Behav Immun ; 114: 383-406, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37689276

RESUMO

Psychological stress confers an increased risk for several diseases including psychiatric conditions. The susceptibility to psychological stress is modulated by various factors, many of them being modifiable lifestyle choices. The ketogenic diet (KD) has emerged as a dietary regime that offers positive outcomes on mood and health status. Psychological stress and elevated inflammation are common features of neuropsychiatric disorders such as certain types of major depressive disorder. KD has been attributed anti-inflammatory properties that could underlie its beneficial consequences on the brain and behavior. Microglia are the main drivers of inflammation in the central nervous system. They are known to respond to both dietary changes and psychological stress, notably by modifying their production of cytokines and relationships among the brain parenchyma. To assess the interactions between KD and the stress response, including effects on microglia, we examined adult male mice on control diet (CD) versus KD that underwent 10 days of repeated social defeat (RSD) or remained non-stressed (controls; CTRLs). Through a social interaction test, stressed mice were classified as susceptible (SUS) or resistant (RES) to RSD. The mouse population fed a KD tended to have a higher proportion of individuals classified as RES following RSD. Microglial morphology and ultrastructure were then analyzed in the ventral hippocampus CA1, a brain region known to present structural alterations as a response to psychological stress. Distinct changes in microglial soma and arborization linked to the KD, SUS and RES phenotypes were revealed. Ultrastructural analysis by electron microscopy showed a clear reduction of cellular stress markers in microglia from KD fed animals. Furthermore, ultrastructural analysis showed that microglial contacts with synaptic elements were reduced in the SUS compared to the RES and CTRL groups. Hippocampal lipidomic analyses lastly identified a distinct lipid profile in SUS animals compared to CTRLs. These key differences, combined with the distinct microglial responses to diet and stress, indicate that unique metabolic changes may underlie the stress susceptibility phenotypes. Altogether, our results reveal novel mechanisms by which a KD might improve the resistance to psychological stress.


Assuntos
Transtorno Depressivo Maior , Dieta Cetogênica , Camundongos , Masculino , Animais , Microglia/metabolismo , Comportamento Social , Derrota Social , Transtorno Depressivo Maior/metabolismo , Lipidômica , Hipocampo , Inflamação/metabolismo , Estresse Psicológico/metabolismo , Camundongos Endogâmicos C57BL
3.
Brain Behav Immun ; 98: 122-135, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403733

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of long-term neurological disability in the world. Currently, there are no therapeutics for treating the deleterious consequences of brain trauma; this is in part due to a lack of complete understanding of cellular processes that underlie TBI-related pathologies. Following TBI, microglia, the brain resident immune cells, turn into a "reactive" state characterized by the production of inflammatory mediators that contribute to the development of cognitive deficits. Utilizing multimodal, state-of-the-art techniques that widely span from ultrastructural analysis to optogenetic interrogation of circuit function, we investigated the reactive microglia phenotype one week after injury when learning and memory deficits are also measured. Microglia displayed increased: (i) phagocytic activity in vivo, (ii) synaptic engulfment, (iii) increased neuronal contact, including with dendrites and somata (termed 'satellite microglia'). Functionally, satellite microglia might impact somatic inhibition as demonstrated by the associated reduction in inhibitory synaptic drive. Cumulatively, here we demonstrate novel microglia-mediated mechanisms that may contribute to synaptic loss and cognitive impairment after traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Animais , Encéfalo , Lesões Encefálicas Traumáticas/complicações , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Microglia
4.
Brain Behav Immun ; 97: 423-439, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34343616

RESUMO

Chronic psychological stress is one of the most important triggers and environmental risk factors for neuropsychiatric disorders. Chronic stress can influence all organs via the secretion of stress hormones, including glucocorticoids by the adrenal glands, which coordinate the stress response across the body. In the brain, glucocorticoid receptors (GR) are expressed by various cell types including microglia, which are its resident immune cells regulating stress-induced inflammatory processes. To study the roles of microglial GR under normal homeostatic conditions and following chronic stress, we generated a mouse model in which the GR gene is depleted in microglia specifically at adulthood to prevent developmental confounds. We first confirmed that microglia were depleted in GR in our model in males and females among the cingulate cortex and the hippocampus, both stress-sensitive brain regions. Then, cohorts of microglial-GR depleted and wild-type (WT) adult female mice were housed for 3 weeks in a standard or stressful condition, using a chronic unpredictable mild stress (CUMS) paradigm. CUMS induced stress-related behavior in both microglial-GR depleted and WT animals as demonstrated by a decrease of both saccharine preference and progressive ratio breakpoint. Nevertheless, the hippocampal microglial and neural mechanisms underlying the adaptation to stress occurred differently between the two genotypes. Upon CUMS exposure, microglial morphology was altered in the WT controls, without any apparent effect in microglial-GR depleted mice. Furthermore, in the standard environment condition, GR depleted-microglia showed increased expression of pro-inflammatory genes, and genes involved in microglial homeostatic functions (such as Trem2, Cx3cr1 and Mertk). On the contrary, in CUMS condition, GR depleted-microglia showed reduced expression levels of pro-inflammatory genes and increased neuroprotective as well as anti-inflammatory genes compared to WT-microglia. Moreover, in microglial-GR depleted mice, but not in WT mice, CUMS led to a significant reduction of CA1 long-term potentiation and paired-pulse ratio. Lastly, differences in adult hippocampal neurogenesis were observed between the genotypes during normal homeostatic conditions, with microglial-GR deficiency increasing the formation of newborn neurons in the dentate gyrus subgranular zone independently from stress exposure. Together, these findings indicate that, although the deletion of microglial GR did not prevent the animal's ability to respond to stress, it contributed to modulating hippocampal functions in both standard and stressful conditions, notably by shaping the microglial response to chronic stress.


Assuntos
Microglia , Receptores de Glucocorticoides , Animais , Feminino , Hipocampo/metabolismo , Masculino , Glicoproteínas de Membrana , Camundongos , Microglia/metabolismo , Neurogênese , Neurônios/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores Imunológicos , Estresse Psicológico
5.
J Physiol ; 598(13): 2757-2773, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32347541

RESUMO

KEY POINTS: The hypothalamic-pituitary-adrenal (HPA) axis habituates to repeated stress exposure. We studied hypothalamic corticotropin-releasing hormone (CRH) neurons that form the apex of the HPA axis in a mouse model of stress habituation using repeated restraint. The intrinsic excitability of CRH neurons decreased after repeated stress in a time course that coincided with the development of HPA axis habituation. This intrinsic excitability plasticity co-developed with an expansion of surface membrane area, which increased a passive electric load and dampened membrane depolarization in response to the influx of positive charge. We report a novel structure-function relationship for intrinsic excitability plasticity as a neural correlate for HPA axis habituation. ABSTRACT: Encountering a stressor immediately activates the hypothalamic-pituitary-adrenal (HPA) axis, but this stereotypic stress response also undergoes experience-dependent adaptation. Despite the biological and clinical importance, how the brain adjusts stress responsiveness in the long term remains poorly understood. We studied hypothalamic corticotropin-releasing hormone neurons that form the apex of the HPA axis in a mouse model of stress habituation using repeated restraint. Using patch-clamp electrophysiology in acute slices, we found that the intrinsic excitability of these neurons substantially decreased after daily repeated stress in a time course that coincided with their loss of stress responsiveness in vivo. This intrinsic excitability plasticity co-developed with an expansion of surface membrane area, which increased a passive electric load, and dampened membrane depolarization in response to the influx of positive charge. Multiphoton imaging and electron microscopy revealed that repeated stress augmented ruffling of the plasma membrane, suggesting an ultrastructural plasticity that may efficiently accommodate the membrane area expansion. Overall, we report a novel structure-function relationship for intrinsic excitability plasticity as a neural correlate for adaptation of the neuroendocrine stress response.


Assuntos
Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Animais , Corticosterona , Hormônio Liberador da Corticotropina/metabolismo , Hipertrofia , Sistema Hipotálamo-Hipofisário/metabolismo , Camundongos , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Fisiológico , Estresse Psicológico
6.
J Neuroinflammation ; 17(1): 264, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32891154

RESUMO

BACKGROUND: Maternal nutrition is critical for proper fetal development. While increased nutrient intake is essential during pregnancy, an excessive consumption of certain nutrients, like fat, can lead to long-lasting detrimental consequences on the offspring. Animal work investigating the consequences of maternal high-fat diet (mHFD) revealed in the offspring a maternal immune activation (MIA) phenotype associated with increased inflammatory signals. This inflammation was proposed as one of the mechanisms causing neuronal circuit dysfunction, notably in the hippocampus, by altering the brain-resident macrophages-microglia. However, the understanding of mechanisms linking inflammation and microglial activities to pathological brain development remains limited. We hypothesized that mHFD-induced inflammation could prime microglia by altering their specific gene expression signature, population density, and/or functions. METHODS: We used an integrative approach combining molecular (i.e., multiplex-ELISA, rt-qPCR) and cellular (i.e., histochemistry, electron microscopy) techniques to investigate the effects of mHFD (saturated and unsaturated fats) vs control diet on inflammatory priming, as well as microglial transcriptomic signature, density, distribution, morphology, and ultrastructure in mice. These analyses were performed on the mothers and/or their adolescent offspring at postnatal day 30. RESULTS: Our study revealed that mHFD results in MIA defined by increased circulating levels of interleukin (IL)-6 in the mothers. This phenotype was associated with an exacerbated inflammatory response to peripheral lipopolysaccharide in mHFD-exposed offspring of both sexes. Microglial morphology was also altered, and there were increased microglial interactions with astrocytes in the hippocampus CA1 of mHFD-exposed male offspring, as well as decreased microglia-associated extracellular space pockets in the same region of mHFD-exposed offspring of the two sexes. A decreased mRNA expression of the inflammatory-regulating cytokine Tgfb1 and microglial receptors Tmem119, Trem2, and Cx3cr1 was additionally measured in the hippocampus of mHFD-exposed offspring, especially in males. CONCLUSIONS: Here, we described how dietary habits during pregnancy and nurturing, particularly the consumption of an enriched fat diet, can influence peripheral immune priming in the offspring. We also found that microglia are affected in terms of gene expression signature, morphology, and interactions with the hippocampal parenchyma, in a partially sexually dimorphic manner, which may contribute to the adverse neurodevelopmental outcomes on the offspring.


Assuntos
Dieta Hiperlipídica , Hipocampo/patologia , Inflamação/patologia , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Microglia/patologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Adolescente , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Forma Celular/fisiologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-6/sangue , Lipopolissacarídeos/farmacologia , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Gravidez , Receptores Imunológicos/metabolismo , Fatores Sexuais , Fator de Crescimento Transformador beta1/metabolismo
7.
J Neuroinflammation ; 15(1): 62, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29490666

RESUMO

BACKGROUND: Angiotensin II (Ang II), a peptide hormone involved in the development of hypertension, causes systemic and cerebral inflammation, affecting brain regions important for blood pressure control. The cause-and-effect relationship between hypertension and inflammation is two-way, but the role of blood pressure in the induction of cerebral inflammation is less clear. The vulnerability of specific brain regions, particularly those important for memory, is also of interest. METHODS: We used molecular biology approaches, immunohistochemistry, and electron microscopy to examine the interdependence between the hypertensive and pro-inflammatory effects of Ang II. We examined the effect of blood pressure by administering a subpressive (200 ng/kg/min) or a pressive Ang II dose (1000 or 1900 ng/kg/min) with and without hydralazine (150 mg/L) for 1 week and used phenylephrine to increase blood pressure independently of the renin-angiotensin system. RESULTS: Ang II increased ionized calcium-binding adaptor molecule 1 (Iba-1) levels (marker of microgliosis) in the whole brain and in the hippocampus in a dose-dependent manner. Pressive Ang II induced specific changes in microglial morphology, indicating differences in functional phenotype. An increase in hippocampal glial fibrillary acidic protein (GFAP) was seen in mice receiving pressive Ang II, while no induction of cerebral gliosis was observed after 7 days of subpressive Ang II infusion. Although phenylephrine led to increased astrogliosis, it did not affect Iba-1 expression. Pressive Ang II stimulated TNF-α production in the hippocampus, and daily treatment with hydralazine prevented this increase. Hydralazine also reduced GFAP and Iba-1 levels. With longer perfusion (14 days), subpressive Ang II led to some but not all the inflammatory changes detected with the pressive doses, mainly an increase in CD68 and Iba-1 but not of GFAP or TNF-α. CONCLUSIONS: Blood pressure and Ang II differentially contribute to hippocampal inflammation in mice. Control of blood pressure and Ang II levels should prevent or reduce brain inflammation and therefore brain dysfunctions associated with hypertension.


Assuntos
Angiotensina II/toxicidade , Pressão Sanguínea/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipertensão/induzido quimicamente , Hipertensão/patologia , Animais , Pressão Sanguínea/fisiologia , Hipocampo/metabolismo , Hipertensão/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
8.
Eur J Neurosci ; 40(2): 2406-16, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24750443

RESUMO

The midbrain dopamine (DA) cell death underlying Parkinson's disease (PD) is associated with upregulation of pre-enkephalin (pENK) in striatopallidal neurons. Our previous results obtained with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) parkinsonian monkeys suggest that increased striatal expression of pENK mRNA is a compensatory mechanism to alleviate PD-related motor symptoms. In this study, we tested the hypothesis that increased pENK expression in the striatum protects against the neurotoxic insults of MPTP in mice. To this end, recombinant adeno-associated virus serotype 2 also containing green fluorescent protein was used to overexpress pENK prior to DA depletion. Our results showed that overexpression of pENK in the striatum of MPTP mice induced: (i) increased levels of the opioid peptide enkephalin (ENK) in the striatum; (ii) higher densities of ENK-positive fibers in both the globus pallidus (GP) and the substantia nigra; (iii) higher locomotor activity; and (iv) a higher density of striatal tyrosine hydroxylase-positive fibers in the striatum. In addition, striatal overexpression of pENK in MPTP -treated mice led to 52 and 43% higher DA concentrations and DA turnover, respectively, in the GP compared to sham-treated MPTP mice. These observations are in agreement with the idea that increased expression of pENK at an early stage of disease can improve PD symptoms.


Assuntos
Encefalinas/metabolismo , Globo Pálido/metabolismo , Intoxicação por MPTP/metabolismo , Precursores de Proteínas/metabolismo , Animais , Dopamina/metabolismo , Encefalinas/genética , Locomoção , Intoxicação por MPTP/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Precursores de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
9.
Sci Rep ; 14(1): 436, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172520

RESUMO

Oocyte maturation is a key process during which the female germ cell undergoes resumption of meiosis and completes its preparation for embryonic development including cytoplasmic and epigenetic maturation. The cumulus cells directly surrounding the oocyte are involved in this process by transferring essential metabolites, such as pyruvate, to the oocyte. This process is controlled by cyclic adenosine monophosphate (cAMP)-dependent mechanisms recruited downstream of follicle-stimulating hormone (FSH) signaling in cumulus cells. As mitochondria have a critical but poorly understood contribution to this process, we defined the effects of FSH and high cAMP concentrations on mitochondrial dynamics and function in porcine cumulus cells. During in vitro maturation (IVM) of cumulus-oocyte complexes (COCs), we observed an FSH-dependent mitochondrial elongation shortly after stimulation that led to mitochondrial fragmentation 24 h later. Importantly, mitochondrial elongation was accompanied by decreased mitochondrial activity and a switch to glycolysis. During a pre-IVM culture step increasing intracellular cAMP, mitochondrial fragmentation was prevented. Altogether, the results demonstrate that FSH triggers rapid changes in mitochondrial structure and function in COCs involving cAMP.


Assuntos
Células do Cúmulo , Hormônio Foliculoestimulante , Gravidez , Suínos , Feminino , Animais , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Células do Cúmulo/metabolismo , Oócitos/metabolismo , Oogênese , Hormônio Foliculoestimulante Humano/metabolismo , Mitocôndrias , Meiose
10.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693370

RESUMO

Psychological stress confers an increased risk for several diseases including psychiatric conditions. The susceptibility to psychological stress is modulated by various factors, many of them being modifiable lifestyle choices. The ketogenic diet (KD) has emerged as a dietary regime that offers positive outcomes on mood and health status. Psychological stress and elevated inflammation are common features of neuropsychiatric disorders such as certain types of major depressive disorder. KD has been attributed anti-inflammatory properties that could underlie its beneficial consequences on the brain and behavior. Microglia are the main drivers of inflammation in the central nervous system. They are known to respond to both dietary changes and psychological stress, notably by modifying their production of cytokines and relationships among the brain parenchyma. To assess the interactions between KD and the stress response, including effects on microglia, we examined adult male mice on control diet (CD) versus KD that underwent 10 days of repeated social defeat (RSD) or remained non-stressed (controls; CTRLs). Through a social interaction test, stressed mice were classified as susceptible (SUS) or resistant (RES) to RSD. The mouse population fed a KD tended to have a higher proportion of individuals classified as RES following RSD. Microglial morphology and ultrastructure were then analyzed in the ventral hippocampus CA1, a brain region known to present structural alterations as a response to psychological stress. Distinct changes in microglial soma and arborization linked to the KD, SUS and RES phenotypes were revealed. Ultrastructural analysis by electron microscopy showed a clear reduction of cellular stress markers in microglia from KD fed animals. Furthermore, ultrastructural analysis showed that microglial contacts with synaptic elements were reduced in the SUS compared to the RES and CTRL groups. Hippocampal lipidomic analyses lastly identified a distinct lipid profile in SUS animals compared to CTRLs. These key differences, combined with the distinct microglial responses to diet and stress, indicate that unique metabolic changes may underlie the stress susceptibility phenotypes. Altogether, our results reveal novel mechanisms by which a KD might improve the resistance to psychological stress.

11.
Nat Neurosci ; 26(6): 1008-1020, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169859

RESUMO

Molecular diversity of microglia, the resident immune cells in the CNS, is reported. Whether microglial subsets characterized by the expression of specific proteins constitute subtypes with distinct functions has not been fully elucidated. Here we describe a microglial subtype expressing the enzyme arginase-1 (ARG1; that is, ARG1+ microglia) that is found predominantly in the basal forebrain and ventral striatum during early postnatal mouse development. ARG1+ microglia are enriched in phagocytic inclusions and exhibit a distinct molecular signature, including upregulation of genes such as Apoe, Clec7a, Igf1, Lgals3 and Mgl2, compared to ARG1- microglia. Microglial-specific knockdown of Arg1 results in deficient cholinergic innervation and impaired dendritic spine maturation in the hippocampus where cholinergic neurons project, which in turn results in impaired long-term potentiation and cognitive behavioral deficiencies in female mice. Our results expand on microglia diversity and provide insights into microglia subtype-specific functions.


Assuntos
Arginase , Microglia , Animais , Feminino , Camundongos , Arginase/genética , Arginase/metabolismo , Hipocampo/metabolismo , Microglia/metabolismo
12.
Sci Rep ; 12(1): 15403, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100690

RESUMO

In the ovarian follicle, a bilateral cell-to-cell communication exists between the female germ cell and the cumulus cells which surround the oocyte. This communication allows the transit of small size molecules known to impact oocyte developmental competence. Pyruvate derivatives produced by mitochondria, are one of these transferred molecules. Interestingly, mitochondria may adopt a variety of morphologies to regulate their functions. In this study, we described mitochondrial morphologies in porcine cumulus cells. Active mitochondria were stained with TMRM (Tetramethylrhodamine, Methyl Ester, Perchlorate) and observed with 2D confocal microscopy showing mitochondria of different morphologies such as short, intermediate, long, and very long. The number of mitochondria of each phenotype was quantified in cells and the results showed that most cells contained elongated mitochondria. Scanning electron microscopy (SEM) analysis confirmed at nanoscale resolution the different mitochondrial morphologies including round, short, intermediate, and long. Interestingly, 3D visualisation by focused ion-beam scanning electron microscopy (FIB-SEM) revealed different complex mitochondrial morphologies including connected clusters of different sizes, branched mitochondria, as well as individual mitochondria. Since mitochondrial dynamics is a key regulator of function, the description of the mitochondrial network organisation will allow to further study mitochondrial dynamics in cumulus cells in response to various conditions such as in vitro maturation.


Assuntos
Células do Cúmulo , Mitocôndrias , Animais , Feminino , Microscopia Eletrônica de Varredura , Dinâmica Mitocondrial , Oócitos/fisiologia , Suínos
13.
Brain Behav Immun Health ; 15: 100281, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34589781

RESUMO

Prenatal exposure to maternal high-fat diet (mHFD) acts as a risk factor for various neurodevelopmental alterations in the progeny. Recent studies in mice revealed that mHFD results in both neuroinflammation and hypomyelination in the exposed offspring. Microglia, the brain-resident macrophages, play crucial roles during brain development, notably by modulating oligodendrocyte populations and performing phagocytosis of myelin sheaths. Previously, we reported that mHFD modifies microglial phenotype (i.e., morphology, interactions with their microenvironment, transcripts) in the hippocampus of male and female offspring. In the current study, we further explored whether mHFD may induce myelination changes among the hippocampal-corpus callosum-prefrontal cortex pathway, and result in behavioral outcomes in adolescent offspring of the two sexes. To this end, female mice were fed with control chow or HFD for 4 weeks before mating, during gestation, and until weaning of their litter. Histological and ultrastructural analyses revealed an increased density of myelin associated with a reduced area of cytosolic myelin channels in the corpus callosum of mHFD-exposed male compared to female offspring. Transcripts of myelination-associated genes including Igf1 -a growth factor released by microglia- were also lower, specifically in the hippocampus (without changes in the prefrontal cortex) of adolescent male mouse offspring. These changes in myelin were not related to an altered density, distribution, or maturation of oligodendrocytes, instead we found that microglia within the corpus callosum of mHFD-exposed offspring showed reduced numbers of mature lysosomes and increased synaptic contacts, suggesting microglial implication in the modified myelination. At the behavioral level, both male and female mHFD-exposed adolescent offspring presented loss of social memory and sensorimotor gating deficits. These results together highlight the importance of studying oligodendrocyte-microglia crosstalk and its involvement in the long-term brain alterations that result from prenatal mHFD in offspring across sexes.

14.
Sci Transl Med ; 13(581)2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597264

RESUMO

The accumulation of DNA and nuclear components in blood and their recognition by autoantibodies play a central role in the pathophysiology of systemic lupus erythematosus (SLE). Despite the efforts, the sources of circulating autoantigens in SLE are still unclear. Here, we show that in SLE, platelets release mitochondrial DNA, the majority of which is associated with the extracellular mitochondrial organelle. Mitochondrial release in patients with SLE correlates with platelet degranulation. This process requires the stimulation of platelet FcγRIIA, a receptor for immune complexes. Because mice lack FcγRIIA and murine platelets are completely devoid of receptor capable of binding IgG-containing immune complexes, we used transgenic mice expressing FcγRIIA for our in vivo investigations. FcγRIIA expression in lupus-prone mice led to the recruitment of platelets in kidneys and to the release of mitochondria in vivo. Using a reporter mouse with red fluorescent protein targeted to the mitochondrion, we confirmed platelets as a source of extracellular mitochondria driven by FcγRIIA and its cosignaling by the fibrinogen receptor α2bß3 in vivo. These findings suggest that platelets might be a key source of mitochondrial antigens in SLE and might be a therapeutic target for treating SLE.


Assuntos
Plaquetas , Lúpus Eritematoso Sistêmico , Animais , Complexo Antígeno-Anticorpo , Autoanticorpos/metabolismo , Plaquetas/metabolismo , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Mitocôndrias , Receptores de IgG/metabolismo
15.
BMC Microbiol ; 10: 253, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20932308

RESUMO

BACKGROUND: Pre-elafin/trappin-2 is a human innate defense molecule initially described as a potent inhibitor of neutrophil elastase. The full-length protein as well as the N-terminal "cementoin" and C-terminal "elafin" domains were also shown to possess broad antimicrobial activity, namely against the opportunistic pathogen P. aeruginosa. The mode of action of these peptides has, however, yet to be fully elucidated. Both domains of pre-elafin/trappin-2 are polycationic, but only the structure of the elafin domain is currently known. The aim of the present study was to determine the secondary structures of the cementoin domain and to characterize the antibacterial properties of these peptides against P. aeruginosa. RESULTS: We show here that the cementoin domain adopts an α-helical conformation both by circular dichroism and nuclear magnetic resonance analyses in the presence of membrane mimetics, a characteristic shared with a large number of linear polycationic antimicrobial peptides. However, pre-elafin/trappin-2 and its domains display only weak lytic properties, as assessed by scanning electron micrography, outer and inner membrane depolarization studies with P. aeruginosa and leakage of liposome-entrapped calcein. Confocal microscopy of fluorescein-labeled pre-elafin/trappin-2 suggests that this protein possesses the ability to translocate across membranes. This correlates with the finding that pre-elafin/trappin-2 and elafin bind to DNA in vitro and attenuate the expression of some P. aeruginosa virulence factors, namely the biofilm formation and the secretion of pyoverdine. CONCLUSIONS: The N-terminal cementoin domain adopts α-helical secondary structures in a membrane mimetic environment, which is common in antimicrobial peptides. However, unlike numerous linear polycationic antimicrobial peptides, membrane disruption does not appear to be the main function of either cementoin, elafin or full-length pre-elafin/trappin-2 against P. aeruginosa. Our results rather suggest that pre-elafin/trappin-2 and elafin, but not cementoin, possess the ability to modulate the expression of some P.aeruginosa virulence factors, possibly through acting on intracellular targets.


Assuntos
Elafina/imunologia , Peptídeos/imunologia , Pseudomonas aeruginosa/patogenicidade , Biofilmes , Elafina/metabolismo , Elafina/ultraestrutura , Humanos , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/ultraestrutura , Fatores de Virulência/metabolismo
16.
Sci Rep ; 9(1): 12493, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462694

RESUMO

Cyclic adenosine monophosphate (cAMP) is a ubiquitous secondary messenger that plays a central role in endocrine tissue function, particularly in the synthesis of steroid hormones. The intracellular concentration of cAMP is regulated through its synthesis by cyclases and its degradation by cyclic nucleotide phosphodiesterases (PDEs). Although the expression and activity of PDEs impact the specificity and the amplitude of the cAMP response, it is becoming increasingly clear that the sub-cellular localization of PDE emphasizes the spatial regulation of the cell signalling processes that are essential for normal cellular function. We first examined the expression of PDE8A in porcine ovarian cells. PDE8A is expressed in granulosa cells, cumulus cells and oocytes. Second, we assessed the mitochondrial sub-cellular localization of PDE8A. Using western blotting with isolated mitochondrial fractions from granulosa cells and cumulus-oocyte complexes revealed immuno-reactive bands. PDE assay of isolated mitochondrial fractions from granulosa cells measured specific PDE8 cAMP-PDE activity as PF-04957325-sensitive. The immune-reactive PDE8A signal and MitoTracker labelling co-localized supporting mitochondrial sub-cellular localization of PDE8A, which was confirmed using immuno-electron microscopy. Finally, the effect of PDE8 on progesterone production was assessed during the in-vitro maturation of cumulus-oocyte complexes. Using PF-04957325, we observed a significant increase (P < 0.05) in progesterone secretion with follicle-stimulating hormone (FSH). Active mitochondria stained with MitoTracker orange CMTMRos were also increased by the specific PDE8 inhibitor supporting its functional regulation. In conclusion, we propose the occurrence of mitochondrial sub-cellular localization of PDE8A in porcine granulosa cells and cumulus cells. This suggests that there is potential for new strategies for ovarian stimulation and artificial reproductive technologies, as well as the possibility for using new media to improve the quality of oocytes.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/biossíntese , Regulação Enzimológica da Expressão Gênica , Células da Granulosa/enzimologia , Mitocôndrias/enzimologia , Proteínas Mitocondriais/biossíntese , Sistemas do Segundo Mensageiro , Animais , AMP Cíclico/metabolismo , Feminino , Células da Granulosa/ultraestrutura , Mitocôndrias/ultraestrutura , Suínos
17.
Nat Commun ; 10(1): 518, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705270

RESUMO

The role of microglia in spinal cord injury (SCI) remains poorly understood and is often confused with the response of macrophages. Here, we use specific transgenic mouse lines and depleting agents to understand the response of microglia after SCI. We find that microglia are highly dynamic and proliferate extensively during the first two weeks, accumulating around the lesion. There, activated microglia position themselves at the interface between infiltrating leukocytes and astrocytes, which proliferate and form a scar in response to microglia-derived factors, such as IGF-1. Depletion of microglia after SCI causes disruption of glial scar formation, enhances parenchymal immune infiltrates, reduces neuronal and oligodendrocyte survival, and impairs locomotor recovery. Conversely, increased microglial proliferation, induced by local M-CSF delivery, reduces lesion size and enhances functional recovery. Altogether, our results identify microglia as a key cellular component of the scar that develops after SCI to protect neural tissue.


Assuntos
Microglia/citologia , Traumatismos da Medula Espinal/metabolismo , Animais , Movimento Celular/genética , Movimento Celular/fisiologia , Citometria de Fluxo , Imunofluorescência , Hibridização In Situ , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Microglia/fisiologia , Microscopia Confocal , Microscopia Imunoeletrônica , Neurônios/metabolismo , Oligodendroglia/metabolismo
18.
Front Mol Neurosci ; 11: 100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681795

RESUMO

The adaptation to chronic stress is highly variable across individuals. Resilience to stress is a complex process recruiting various brain regions and neurotransmitter systems. The aim of this study was to investigate the involvement of endogenous opioid enkephalin (ENK) signaling in the development of stress resilience in mice. The translational model of repeated social defeat (RSD) stress was selected to mimic the unpredictable disruptions of daily life and induce resilience or vulnerability to stress. As in humans, adult C57BL/6J mice demonstrated a great variability in their response to stress under this paradigm. A social interaction (SI) test was used to discriminate between the phenotypes of resilience or vulnerability to stress. After social defeat, the expression levels of ENK mRNA and their delta opioid receptors (DOPr) were quantified in the basolateral amygdala (BLA) and BLA-target areas by in situ hybridization. In this manner, ENK mRNA levels were found to decrease in the BLA and those of DOPr in the ventral hippocampus (HPC) CA1 of vulnerable mice only. Stimulating the DOPr pathway during social defeat by pharmacological treatment with the nonpeptide, selective DOPr agonist SNC80 further induced a resilient phenotype in a majority of stressed animals, with the proportion of resilient ones increasing from 33% to 58% of the total population. Ultrastructural analyses additionally revealed a reduction of oxidative stress markers in the pyramidal cells and interneurons of the ventral HPC CA1 upon SNC80 treatment, thus proposing a mechanism by which ENK-DOPr signaling may prevent the deleterious effects of chronic social stress.

19.
J Colloid Interface Sci ; 310(2): 436-45, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17359991

RESUMO

Interaction of mitochondrial creatine kinase (mtCK) with either synthetic or natural zwitterionic or acidic phospholipids was monitored by surface pressure measurements. Injection of mtCK beneath a monolayer at very low surface pressure results in a large increase in the apparent area per lipid molecule reflecting the intrinsic surface activity of the protein. This effect is particularly pronounced with anionic phospholipid-containing films. Upon compression to high lateral pressure, the protein is squeezed out of the lipid monolayer. On the contrary, mtCK injected beneath a monolayer compressed at 30 mN/m, does not insert into the monolayer but is concentrated below the surface by anionic phospholipids as evidenced by the immediate and strong increase in the apparent molecular area occurring upon decompression. Below 8 mN/m the protein adsorbs to the interface and remains intercalated until the lateral pressure increases again. The critical pressure of insertion is higher for anionic lipid-containing monolayers than for films containing only zwitterionic phospholipids. In the former case it is markedly diminished by NaCl. The adsorption of mtCK depends on the percentage of negative charges carried by the monolayer and is reduced by increasing NaCl concentrations. However, the residual interaction existing in the absence of a global negative charge on the membrane may indicate that this interaction also involves a hydrophobic component.


Assuntos
Creatina Quinase Mitocondrial/química , Lipídeos/química , Membranas Artificiais , Adsorção , Animais , Biomimética , Eletroquímica , Interações Hidrofóbicas e Hidrofílicas , Pressão , Coelhos , Cloreto de Sódio/química , Propriedades de Superfície
20.
Biochimie ; 91(6): 752-64, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19341780

RESUMO

Our study highlights the tight relationship between protein binding to monolayers and the phase-state of the phospholipids. Interaction of mitochondrial creatine kinase with phospholipidic membranes was analysed using a two-phase monolayer system containing anionic phospholipids under chain mismatch conditions. Monolayers were made up of mixtures of DMPC/DPPG or DPPC/DMPG containing 40% negatively charged phospholipids which is approximately the negative charge content of the mitochondrial inner membrane. Langmuir isotherms of these monolayers showed that they underwent a phase transition from a liquid expanded state to a liquid-condensed phase at about 2 mN/m and 5 mN/m respectively. Interface morphology modifications caused by injection of mtCK under these monolayers at low or high surface pressure were monitored by Brewster angle microscopy. This work provides evidence that the presence at the air/water interface of discrete domains with increased charge density, may lead to difference in partition of soluble proteins such as mtCK, interacting with the lipid monolayer. Conversely these proteins may help to organize charged phospholipid domains in a membrane.


Assuntos
Creatina Quinase/metabolismo , Bicamadas Lipídicas/metabolismo , Mitocôndrias Cardíacas/enzimologia , Proteínas Mitocondriais/metabolismo , Animais , Creatina Quinase/química , Cinética , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Microscopia/métodos , Proteínas Mitocondriais/química , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Ligação Proteica , Coelhos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA