Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Proteome Res ; 22(8): 2620-2628, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37459443

RESUMO

Unipept Desktop 2.0 is the most recent iteration of the Unipept Desktop tool that adds support for the analysis of metaproteogenomics datasets. Unipept Desktop now supports the automatic construction of targeted protein reference databases that only contain proteins (originating from the UniProtKB resource) associated with a predetermined list of taxa. This improves both the taxonomic and functional resolution of a metaproteomic analysis and yields several technical advantages. By limiting the proteins present in a reference database, it is also possible to perform (meta)proteogenomics analyses. Since the protein reference database resides on the user's local machine, they have complete control over the database used during an analysis. Data no longer need to be transmitted over the Internet, decreasing the time required for an analysis and better safeguarding privacy-sensitive data. As a proof of concept, we present a case study in which a human gut metaproteome dataset is analyzed with Unipept Desktop 2.0 using different targeted databases based on matched 16S rRNA gene sequencing data.


Assuntos
Metagenômica , Proteínas , Humanos , Bases de Dados de Proteínas , RNA Ribossômico 16S
2.
Bioinformatics ; 38(2): 562-563, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34390575

RESUMO

SUMMARY: The Unipept Visualizations library is a JavaScript package to generate interactive visualizations of both hierarchical and non-hierarchical quantitative data. It provides four different visualizations: a sunburst, a treemap, a treeview and a heatmap. Every visualization is fully configurable, supports TypeScript and uses the excellent D3.js library. AVAILABILITY AND IMPLEMENTATION: The Unipept Visualizations library is available for download on NPM: https://npmjs.com/unipept-visualizations. All source code is freely available from GitHub under the MIT license: https://github.com/unipept/unipept-visualizations.


Assuntos
Visualização de Dados , Software , Biologia Computacional
3.
J Proteome Res ; 21(4): 1175-1180, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143215

RESUMO

In metaproteomics, the study of the collective proteome of microbial communities, the protein inference problem is more challenging than in single-species proteomics. Indeed, a peptide sequence can be present not only in multiple proteins or protein isoforms of the same species, but also in homologous proteins from closely related species. To assign the taxonomy and functions of the microbial species, specialized tools have been developed, such as Prophane. This tool, however, is not directly compatible with post-processing tools such as Percolator. In this manuscript we therefore present Pout2Prot, which takes Percolator Output (.pout) files from multiple experiments and creates protein group and protein subgroup output files (.tsv) that can be used directly with Prophane. We investigated different grouping strategies and compared existing protein grouping tools to develop an advanced protein grouping algorithm that offers a variety of different approaches, allows grouping for multiple files, and uses a weighted spectral count for protein (sub)groups to reflect abundance. Pout2Prot is available as a web application at https://pout2prot.ugent.be and is installable via pip as a standalone command line tool and reusable software library. All code is open source under the Apache License 2.0 and is available at https://github.com/compomics/pout2prot.


Assuntos
Proteômica , Software , Algoritmos , Bases de Dados de Proteínas , Proteoma
4.
BMC Genomics ; 23(1): 433, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689184

RESUMO

BACKGROUND: Shotgun metagenomics yields ever richer and larger data volumes on the complex communities living in diverse environments. Extracting deep insights from the raw reads heavily depends on the availability of fast, accurate and user-friendly biodiversity analysis tools. RESULTS: Because environmental samples may contain strains and species that are not covered in reference databases and because protein sequences are more conserved than the genes encoding them, we explore the alternative route of taxonomic profiling based on protein coding regions translated from the shotgun metagenomics reads, instead of directly processing the DNA reads. We therefore developed the Unipept MetaGenomics Analysis Pipeline (UMGAP), a highly versatile suite of open source tools that are implemented in Rust and support parallelization to achieve optimal performance. Six preconfigured pipelines with different performance trade-offs were carefully selected, and benchmarked against a selection of state-of-the-art shotgun metagenomics taxonomic profiling tools. CONCLUSIONS: UMGAP's protein space detour for taxonomic profiling makes it competitive with state-of-the-art shotgun metagenomics tools. Despite our design choices of an extra protein translation step, a broad spectrum index that can identify both archaea, bacteria, eukaryotes and viruses, and a highly configurable non-monolithic design, UMGAP achieves low runtime, manageable memory footprint and high accuracy. Its interactive visualizations allow for easy exploration and comparison of complex communities.


Assuntos
Metagenômica , Vírus , Algoritmos , Bactérias/genética , Análise de Sequência de DNA , Software , Vírus/genética
5.
J Proteome Res ; 20(4): 2005-2009, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401902

RESUMO

Metaproteomics has become an important research tool to study microbial systems, which has resulted in increased metaproteomics data generation. However, efficient tools for processing the acquired data have lagged behind. One widely used tool for metaproteomics data interpretation is Unipept, a web-based tool that provides, among others, interactive and insightful visualizations. Due to its web-based implementation, however, the Unipept web application is limited in the amount of data that can be analyzed. In this manuscript we therefore present Unipept Desktop, a desktop application version of Unipept that is designed to drastically increase the throughput and capacity of metaproteomics data analysis. Moreover, it provides a novel comparative analysis pipeline and improves the organization of experimental data into projects, thus addressing the growing need for more efficient and versatile analysis tools for metaproteomics data.


Assuntos
Análise de Dados , Software
6.
J Proteome Res ; 20(4): 2083-2088, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33661648

RESUMO

The study of microbiomes has gained in importance over the past few years and has led to the emergence of the fields of metagenomics, metatranscriptomics, and metaproteomics. While initially focused on the study of biodiversity within these communities, the emphasis has increasingly shifted to the study of (changes in) the complete set of functions available in these communities. A key tool to study this functional complement of a microbiome is Gene Ontology (GO) term analysis. However, comparing large sets of GO terms is not an easy task due to the deeply branched nature of GO, which limits the utility of exact term matching. To solve this problem, we here present MegaGO, a user-friendly tool that relies on semantic similarity between GO terms to compute the functional similarity between multiple data sets. MegaGO is high performing: Each set can contain thousands of GO terms, and results are calculated in a matter of seconds. MegaGO is available as a web application at https://megago.ugent.be and is installable via pip as a standalone command line tool and reusable software library. All code is open source under the MIT license and is available at https://github.com/MEGA-GO/.


Assuntos
Microbiota , Software , Biologia Computacional , Ontologia Genética , Metagenômica , Semântica
7.
Bioinformatics ; 36(14): 4220-4221, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32492134

RESUMO

SUMMARY: Unipept is an ecosystem of tools developed for fast metaproteomics data-analysis consisting of a web application, a set of web services (application programming interface, API) and a command-line interface (CLI). After the successful introduction of version 4 of the Unipept web application, we here introduce version 2.0 of the API and CLI. Next to the existing taxonomic analysis, version 2.0 of the API and CLI provides access to Unipept's powerful functional analysis for metaproteomics samples. The functional analysis pipeline supports retrieval of Enzyme Commission numbers, Gene Ontology terms and InterPro entries for the individual peptides in a metaproteomics sample. This paves the way for other applications and developers to integrate these new information sources into their data processing pipelines, which greatly increases insight into the functions performed by the organisms in a specific environment. Both the API and CLI have also been expanded with the ability to render interactive visualizations from a list of taxon ids. These visualizations are automatically made available on a dedicated website and can easily be shared by users. AVAILABILITY AND IMPLEMENTATION: The API is available at http://api.unipept.ugent.be. Information regarding the CLI can be found at https://unipept.ugent.be/clidocs. Both interfaces are freely available and open-source under the MIT license. CONTACT: pieter.verschaffelt@ugent.be. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Ecossistema , Software , Análise de Dados , Peptídeos
8.
J Proteome Res ; 19(8): 3562-3566, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32431147

RESUMO

Although metaproteomics, the study of the collective proteome of microbial communities, has become increasingly powerful and popular over the past few years, the field has lagged behind on the availability of user-friendly, end-to-end pipelines for data analysis. We therefore describe the connection from two commonly used metaproteomics data processing tools in the field, MetaProteomeAnalyzer and PeptideShaker, to Unipept for downstream analysis. Through these connections, direct end-to-end pipelines are built from database searching to taxonomic and functional annotation.


Assuntos
Análise de Dados , Microbiota , Proteoma , Proteômica , Software
9.
J Proteome Res ; 18(2): 606-615, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30465426

RESUMO

Unipept ( https://unipept.ugent.be ) is a web application for metaproteome data analysis, with an initial focus on tryptic-peptide-based biodiversity analysis of MS/MS samples. Because the true potential of metaproteomics lies in gaining insight into the expressed functions of complex environmental samples, the 4.0 release of Unipept introduces complementary functional analysis based on GO terms and EC numbers. Integration of this new functional analysis with the existing biodiversity analysis is an important asset of the extended pipeline. As a proof of concept, a human faecal metaproteome data set from 15 healthy subjects was reanalyzed with Unipept 4.0, yielding fast, detailed, and straightforward characterization of taxon-specific catalytic functions that is shown to be consistent with previous results from a BLAST-based functional analysis of the same data.


Assuntos
Análise de Dados , Proteômica/métodos , Software , Biodiversidade , Misturas Complexas/análise , Fezes/química , Voluntários Saudáveis , Humanos , Estudo de Prova de Conceito , Espectrometria de Massas em Tandem
10.
Methods Mol Biol ; 2836: 183-215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995542

RESUMO

Metaproteomics has become a crucial omics technology for studying microbiomes. In this area, the Unipept ecosystem, accessible at https://unipept.ugent.be , has emerged as a valuable resource for analyzing metaproteomic data. It offers in-depth insights into both taxonomic distributions and functional characteristics of complex ecosystems. This tutorial explains essential concepts like Lowest Common Ancestor (LCA) determination and the handling of peptides with missed cleavages. It also provides a detailed, step-by-step guide on using the Unipept Web application and Unipept Desktop for thorough metaproteomics analyses. By integrating theoretical principles with practical methodologies, this tutorial empowers researchers with the essential knowledge and tools needed to fully utilize metaproteomics in their microbiome studies.


Assuntos
Biodiversidade , Microbiota , Proteômica , Software , Proteômica/métodos , Microbiota/genética , Humanos , Biologia Computacional/métodos , Metagenômica/métodos
11.
Nat Commun ; 12(1): 7305, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911965

RESUMO

Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on results remains unclear. Here, we carry out a community-driven, multi-laboratory comparison in metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). Based on well-established workflows, we evaluate the effect of sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a simplified, laboratory-assembled human intestinal model and a human fecal sample. We observe that variability at the peptide level is predominantly due to sample processing workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level differences largely disappear at the protein group level. While differences are observed for predicted community composition, similar functional profiles are obtained across workflows. CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a template for multi-laboratory studies in metaproteomics, and provides publicly available data sets for benchmarking future developments.


Assuntos
Bactérias/genética , Proteínas de Bactérias/química , Fezes/microbiologia , Proteômica/métodos , Adulto , Bactérias/classificação , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Feminino , Microbioma Gastrointestinal , Humanos , Intestinos/microbiologia , Laboratórios , Espectrometria de Massas , Peptídeos/química , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA