Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 34(21): 7266-80, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24849359

RESUMO

Cyclin-dependent kinase-5 (Cdk5) was reported to downscale neurotransmission by sequestering synaptic vesicles (SVs) in the release-reluctant resting pool, but the molecular targets mediating this activity remain unknown. Synapsin I (SynI), a major SV phosphoprotein involved in the regulation of SV trafficking and neurotransmitter release, is one of the presynaptic substrates of Cdk5, which phosphorylates it in its C-terminal region at Ser(549) (site 6) and Ser(551) (site 7). Here we demonstrate that Cdk5 phosphorylation of SynI fine tunes the recruitment of SVs to the active recycling pool and contributes to the Cdk5-mediated homeostatic responses. Phosphorylation of SynI by Cdk5 is physiologically regulated and enhances its binding to F-actin. The effects of Cdk5 inhibition on the size and depletion kinetics of the recycling pool, as well as on SV distribution within the nerve terminal, are virtually abolished in mouse SynI knock-out (KO) neurons or in KO neurons expressing the dephosphomimetic SynI mutants at sites 6,7 or site 7 only. The observation that the single site-7 mutant phenocopies the effects of the deletion of SynI identifies this site as the central switch in mediating the synaptic effects of Cdk5 and demonstrates that SynI is necessary and sufficient for achieving the effects of the kinase on SV trafficking. The phosphorylation state of SynI by Cdk5 at site 7 is regulated during chronic modification of neuronal activity and is an essential downstream effector for the Cdk5-mediated homeostatic scaling.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Hipocampo/citologia , Sinapses/ultraestrutura , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Células Cultivadas , Chlorocebus aethiops , Quinase 5 Dependente de Ciclina/farmacologia , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Gravidez , Ligação Proteica/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Sinapsinas/deficiência , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/ultraestrutura , Tetrodotoxina/farmacologia
2.
Nat Commun ; 15(1): 1966, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438345

RESUMO

The "dorsal pons", or "dorsal pontine tegmentum" (dPnTg), is part of the brainstem. It is a complex, densely packed region whose nuclei are involved in regulating many vital functions. Notable among them are the parabrachial nucleus, the Kölliker Fuse, the Barrington nucleus, the locus coeruleus, and the dorsal, laterodorsal, and ventral tegmental nuclei. In this study, we applied single-nucleus RNA-seq (snRNA-seq) to resolve neuronal subtypes based on their unique transcriptional profiles and then used multiplexed error robust fluorescence in situ hybridization (MERFISH) to map them spatially. We sampled ~1 million cells across the dPnTg and defined the spatial distribution of over 120 neuronal subtypes. Our analysis identified an unpredicted high transcriptional diversity in this region and pinpointed the unique marker genes of many neuronal subtypes. We also demonstrated that many neuronal subtypes are transcriptionally similar between humans and mice, enhancing this study's translational value. Finally, we developed a freely accessible, GPU and CPU-powered dashboard ( http://harvard.heavy.ai:6273/ ) that combines interactive visual analytics and hardware-accelerated SQL into a data science framework to allow the scientific community to query and gain insights into the data.


Assuntos
Ascomicetos , Núcleos Parabraquiais , Tegmento Pontino , Humanos , Animais , Camundongos , Hibridização in Situ Fluorescente , Tronco Encefálico , Locus Cerúleo
3.
J Neurosci ; 32(17): 5868-79, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22539848

RESUMO

A large amount of experimental evidence has highlighted the rapid changes in synaptic efficacy induced by high-frequency stimulation and BDNF at central excitatory synapses. We clarified the quantal mechanisms and the involvement of Synapsin I (SynI) phosphorylation in the expression of post-tetanic potentiation (PTP) and in its modulation by BDNF in mouse glutamatergic autapses. We found that PTP is associated with an elevation in the probability of release and a concomitant increase in the size of the readily releasable pool (RRP). The latter component was virtually absent in SynI knock-out (KO) neurons, which indeed displayed impaired PTP. PTP was fully rescued by the expression of wild-type SynI, but not of its dephosphomimetic mutants in the phosphorylation sites for cAMP-dependent protein kinase and Ca²âº/calmodulin-dependent protein kinases I/II. BDNF potently enhanced PTP through a further increase in the RRP size, which was missing in SynI KO neurons. In these neurons, the BDNF-induced PTP enhancement was rescued by the expression of wild-type SynI, but not of its dephosphomimetic mutant at the mitogen-dependent protein kinase sites. The results indicate that the increase in RRP size necessary for the full expression of PTP, and its sensitivity to BDNF, involve phosphorylation of SynI at distinct sites, thus implicating SynI as an essential downstream effector for the expression of PTP and for its enhancement by BDNF.


Assuntos
Fenômenos Biofísicos/genética , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Neurônios/efeitos dos fármacos , Mutação Puntual/fisiologia , Sinapsinas/deficiência , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Análise de Variância , Animais , Fenômenos Biofísicos/efeitos dos fármacos , Cálcio/metabolismo , Carbazóis/farmacologia , Células Cultivadas , Estimulação Elétrica , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/citologia , Alcaloides Indólicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Mutagênese Sítio-Dirigida/métodos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Fosforilação/fisiologia , Sinapsinas/genética , Transfecção
4.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014113

RESUMO

The "dorsal pons", or "dorsal pontine tegmentum" (dPnTg), is part of the brainstem. It is a complex, densely packed region whose nuclei are involved in regulating many vital functions. Notable among them are the parabrachial nucleus, the Kölliker Fuse, the Barrington nucleus, the locus coeruleus, and the dorsal, laterodorsal, and ventral tegmental nuclei. In this study, we applied single-nucleus RNA-seq (snRNA-seq) to resolve neuronal subtypes based on their unique transcriptional profiles and then used multiplexed error robust fluorescence in situ hybridization (MERFISH) to map them spatially. We sampled ~1 million cells across the dPnTg and defined the spatial distribution of over 120 neuronal subtypes. Our analysis identified an unpredicted high transcriptional diversity in this region and pinpointed many neuronal subtypes' unique marker genes. We also demonstrated that many neuronal subtypes are transcriptionally similar between humans and mice, enhancing this study's translational value. Finally, we developed a freely accessible, GPU and CPU-powered dashboard (http://harvard.heavy.ai:6273/) that combines interactive visual analytics and hardware-accelerated SQL into a data science framework to allow the scientific community to query and gain insights into the data.

5.
Curr Biol ; 29(24): 4155-4168.e5, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31761703

RESUMO

Among the neuronal populations implicated in sleep-wake control, the ventrolateral preoptic (VLPO) nucleus has emerged as a key sleep-promoting center. However, the synaptic drives that regulate the VLPO to control arousal levels in vivo have not to date been identified. Here, we show that sleep-promoting galaninergic neurons within the VLPO nucleus, defined pharmacologically and by single-cell transcript analysis, are postsynaptic targets of lateral hypothalamic GABAergic (LHGABA) neurons and that activation of this pathway in vivo rapidly drives wakefulness. Ca2+ imaging from LHGABA neurons indicate that they are both wake and rapid eye movement (REM)-sleep active. Consistent with the potent arousal-promoting property of the LHGABA → VLPO pathway, presynaptic inputs to LHGABA neurons originate from several canonical stress- and arousal-related network nodes. This work represents the first demonstration that direct synaptic inhibition of the VLPO area can suppress sleep-promoting neurons to rapidly promote arousal.


Assuntos
Área Pré-Óptica/metabolismo , Sono/fisiologia , Vigília/fisiologia , Animais , Nível de Alerta/fisiologia , Encéfalo/fisiologia , Eletroencefalografia/métodos , Feminino , Neurônios GABAérgicos/metabolismo , Região Hipotalâmica Lateral/fisiologia , Hipotálamo/fisiologia , Masculino , Camundongos , Neurônios/fisiologia , Área Pré-Óptica/fisiologia , Transtornos do Sono do Ritmo Circadiano/fisiopatologia
6.
Curr Biol ; 29(17): 2775-2789.e7, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31422881

RESUMO

Lower urinary tract symptoms (LUTS) are exceptionally common and debilitating, and they are likely caused or exacerbated by dysfunction of neural circuits controlling bladder function. An incomplete understanding of neural control of bladder function limits our ability to clinically address LUTS. Barrington's nucleus (Bar) provides descending control of bladder and sphincter function, and its glutamatergic neurons expressing corticotropin releasing hormone (BarCrh/Vglut2) are implicated in bladder control. However, it remains unclear whether this subset of Bar neurons is necessary for voiding, and the broader circuitry providing input to this control center remains largely unknown. Here, we examine the contribution to micturition behavior of BarCrh/Vglut2 neurons relative to the overall BarVglut2 population. First, we identify robust, excitatory synaptic input to Bar. Glutamatergic axons from the periaqueductal gray (PAG) and lateral hypothalamic area (LHA) intensely innervate and are functionally connected to Bar, and optogenetic stimulation of these axon terminals reliably provokes voiding. Similarly, optogenetic stimulation of BarVglut2 neurons triggers voiding, whereas stimulating the BarCrh/Vglut2 subpopulation causes bladder contraction, typically without voiding. Next, we genetically ablate either BarVglut2 or BarCrh/Vglut2 neurons and found that only BarVglut2 ablation replicates the profound urinary retention produced by conventional lesions in this region. Fiber photometry recordings reveal that BarVglut2 neuron activity precedes increased bladder pressure, while activity of BarCrh/Vglut2 is phase delayed. Finally, deleting Crh from Bar neurons has no effect on voiding and related bladder physiology. Our results help identify the circuitry that modulates Bar neuron activity and identify subtypes that may serve different roles in micturition.


Assuntos
Núcleo de Barrington/fisiologia , Hipotálamo/metabolismo , Mesencéfalo/metabolismo , Neurônios/fisiologia , Micção/fisiologia , Animais , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Masculino , Camundongos , Neurônios Aferentes
7.
J Comp Neurol ; 525(10): 2287-2309, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28340519

RESUMO

Barrington's nucleus (Bar) is thought to contain neurons that trigger voiding and thereby function as the "pontine micturition center." Lacking detailed information on this region in mice, we examined gene and protein markers to characterize Bar and the neurons surrounding it. Like rats and cats, mice have an ovoid core of medium-sized Bar neurons located medial to the locus coeruleus (LC). Bar neurons express a GFP reporter for Vglut2, develop from a Math1/Atoh1 lineage, and exhibit immunoreactivity for NeuN. Many neurons in and around this core cluster express a reporter for corticotrophin-releasing hormone (BarCRH ). Axons from BarCRH neurons project to the lumbosacral spinal cord and ramify extensively in two regions: the dorsal gray commissural and intermediolateral nuclei. BarCRH neurons have unexpectedly long dendrites, which may receive synaptic input from the cerebral cortex and other brain regions beyond the core afferents identified previously. Finally, at least five populations of neurons surround Bar: rostral-dorsomedial cholinergic neurons in the laterodorsal tegmental nucleus; lateral noradrenergic neurons in the LC; medial GABAergic neurons in the pontine central gray; ventromedial, small GABAergic neurons that express FoxP2; and dorsolateral glutamatergic neurons that express FoxP2 in the pLC and form a wedge dividing Bar from the dorsal LC. We discuss the implications of this new information for interpreting existing data and future experiments targeting BarCRH neurons and their synaptic afferents to study micturition and other pelvic functions.


Assuntos
Núcleo de Barrington/anatomia & histologia , Núcleo de Barrington/fisiologia , Micção/fisiologia , Animais , Animais Recém-Nascidos , Núcleo de Barrington/química , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/anatomia & histologia , Vias Neurais/química , Vias Neurais/fisiologia , Ponte/anatomia & histologia , Ponte/química , Ponte/fisiologia
8.
Nat Neurosci ; 20(1): 42-51, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27869800

RESUMO

Arcuate nucleus (ARC) neurons sense the fed or fasted state and regulate hunger. Agouti-related protein (AgRP) neurons in the ARC (ARCAgRP neurons) are stimulated by fasting and, once activated, they rapidly (within minutes) drive hunger. Pro-opiomelanocortin (ARCPOMC) neurons are viewed as the counterpoint to ARCAgRP neurons. They are regulated in an opposite fashion and decrease hunger. However, unlike ARCAgRP neurons, ARCPOMC neurons are extremely slow in affecting hunger (many hours). Thus, a temporally analogous, rapid ARC satiety pathway does not exist or is presently unidentified. Here we show that glutamate-releasing ARC neurons expressing oxytocin receptor, unlike ARCPOMC neurons, rapidly cause satiety when chemo- or optogenetically manipulated. These glutamatergic ARC projections synaptically converge with GABAergic ARCAgRP projections on melanocortin-4 receptor (MC4R)-expressing satiety neurons in the paraventricular hypothalamus (PVHMC4R neurons). Transmission across the ARCGlutamatergic→PVHMC4R synapse is potentiated by the ARCPOMC neuron-derived MC4R agonist, α-melanocyte stimulating hormone (α-MSH). This excitatory ARC→PVH satiety circuit, and its modulation by α-MSH, provides insight into regulation of hunger and satiety.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético/fisiologia , Rede Nervosa/fisiologia , Neurônios/metabolismo , Potenciais Sinápticos/fisiologia , alfa-MSH/metabolismo , Animais , Fome/fisiologia , Hipotálamo/metabolismo , Camundongos Transgênicos , Pró-Opiomelanocortina/metabolismo
9.
Nat Neurosci ; 20(3): 484-496, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28166221

RESUMO

The hypothalamic arcuate-median eminence complex (Arc-ME) controls energy balance, fertility and growth through molecularly distinct cell types, many of which remain unknown. To catalog cell types in an unbiased way, we profiled gene expression in 20,921 individual cells in and around the adult mouse Arc-ME using Drop-seq. We identify 50 transcriptionally distinct Arc-ME cell populations, including a rare tanycyte population at the Arc-ME diffusion barrier, a new leptin-sensing neuron population, multiple agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) subtypes, and an orexigenic somatostatin neuron population. We extended Drop-seq to detect dynamic expression changes across relevant physiological perturbations, revealing cell type-specific responses to energy status, including distinct responses in AgRP and POMC neuron subtypes. Finally, integrating our data with human genome-wide association study data implicates two previously unknown neuron populations in the genetic control of obesity. This resource will accelerate biological discovery by providing insights into molecular and cell type diversity from which function can be inferred.


Assuntos
Núcleo Arqueado do Hipotálamo/anatomia & histologia , Eminência Mediana/anatomia & histologia , Neurônios/metabolismo , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético/fisiologia , Células Ependimogliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Leptina/fisiologia , Masculino , Eminência Mediana/metabolismo , Camundongos , Camundongos Transgênicos , Obesidade/metabolismo , Orexinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/fisiologia , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/fisiologia , Somatostatina/metabolismo
10.
Harv Rev Psychiatry ; 24(6): 416-436, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27824637

RESUMO

Anorexia nervosa (AN) is a psychiatric illness with minimal effective treatments and a very high rate of mortality. Understanding the neurobiological underpinnings of the disease is imperative for improving outcomes and can be aided by the study of animal models. The activity-based anorexia rodent model (ABA) is the current best parallel for the study of AN. This review describes the basic neurobiology of feeding and hyperactivity seen in both ABA and AN, and compiles the research on the role that stress-response and reward pathways play in modulating the homeostatic drive to eat and to expend energy, which become dysfunctional in ABA and AN.


Assuntos
Anorexia Nervosa , Anorexia , Modelos Animais de Doenças , Atividade Motora/fisiologia , Recompensa , Estresse Psicológico , Animais , Anorexia/metabolismo , Anorexia/fisiopatologia , Anorexia Nervosa/metabolismo , Anorexia Nervosa/fisiopatologia , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA