Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 185(1): 196-209, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631809

RESUMO

Legumes play an important role in the soil nitrogen availability via symbiotic nitrogen fixation (SNF). Phosphate (Pi) deficiency severely impacts SNF because of the high Pi requirement of symbiosis. Whereas PHT1 transporters are involved in Pi uptake into nodules, it is unknown how Pi is transferred from the plant infected cells to nitrogen-fixing bacteroids. We hypothesized that Medicago truncatula genes homologous to Arabidopsis PHO1, encoding a vascular apoplastic Pi exporter, are involved in Pi transfer to bacteroids. Among the seven MtPHO1 genes present in M. truncatula, we found that two genes, namely MtPHO1.1 and MtPHO1.2, were broadly expressed across the various nodule zones in addition to the root vascular system. Expressions of MtPHO1.1 and MtPHO1.2 in Nicotiana benthamiana mediated specific Pi export. Plants with nodule-specific downregulation of both MtPHO1.1 and MtPHO1.2 were generated by RNA interference (RNAi) to examine their roles in nodule Pi homeostasis. Nodules of RNAi plants had lower Pi content and a three-fold reduction in SNF, resulting in reduced shoot growth. Whereas the rate of 33Pi uptake into nodules of RNAi plants was similar to control, transfer of 33Pi from nodule cells into bacteroids was reduced and bacteroids activated their Pi-deficiency response. Our results implicate plant MtPHO1 genes in bacteroid Pi homeostasis and SNF via the transfer of Pi from nodule infected cells to bacteroids.


Assuntos
Medicago truncatula/genética , Fixação de Nitrogênio/fisiologia , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/fisiologia , Nódulos Radiculares de Plantas/fisiologia , Sinorhizobium meliloti/fisiologia , Simbiose/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fixação de Nitrogênio/genética , Nódulos Radiculares de Plantas/genética , Simbiose/genética
3.
J Plant Physiol ; 241: 153014, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31487619

RESUMO

Tuberization in potato is governed by many intrinsic and extrinsic factors. Various molecular signals, such as red light photoreceptor (StPHYB), BEL1-like transcription factor (StBEL5), CYCLING DOF FACTOR1 (StCDF1), StCO1/2 (CONSTANS1/2) and StSP6A (Flowering Locus T orthologue), function as crucial regulators during the photoperiod-dependent tuberization pathway. StCDF1 induces tuberization by increasing StSP6A levels via StCO1/2 suppression. Although the circadian clock proteins, GIGANTEA (StGI) and FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (StFKF1), are reported as StCDF1 interactors, how the StCDF1 gene is regulated in potato is unknown. The BEL-KNOX heterodimer regulates key tuberization genes through tandem TGAC core motifs in their promoters. A recent study reported the presence of six tandem TGAC core motifs in the StCDF1 promoter, suggesting possible regulation of StCDF1 by StBEL5. In our study, we observed a positive correlation between StBEL5 and StCDF1 expression, whereas StCDF1 and its known repressor, StFKF1, showed a negative correlation for the tested tissue types. To investigate the StBEL5-StCDF1 interaction, we generated transgenic potato promoter lines containing a wild-type or mutated (deletion of six tandem TGAC sites) StCDF1 promoter fused to GUS. Wild-type promoter transgenic lines exhibited widespread GUS activity, whereas this activity was absent in the mutated promoter transgenic lines. Moreover, StBEL5 and StCDF1 transcript levels were significantly higher in the stolon-to-tuber stages under short-day conditions compared to long-day conditions. Using wild-type and mutated prStCDF1 as baits in Y1H assays, we further demonstrated that StBEL5 interacts with the StCDF1 promoter through tandem TGAC motifs, indicating direct regulation of StCDF1 by StBEL5 in potato.


Assuntos
Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Solanum tuberosum/genética , Solanum tuberosum/fisiologia , Estresse Fisiológico , Sequências de Repetição em Tandem/genética , Sequências de Repetição em Tandem/fisiologia , Fatores de Transcrição/fisiologia , Transcriptoma/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA