Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 43(18): 8801-16, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26227971

RESUMO

Alkylated DNA-protein alkyltransferases repair alkylated DNA bases, which are among the most common DNA lesions, and are evolutionary conserved, from prokaryotes to higher eukaryotes. The human ortholog, hAGT, is involved in resistance to alkylating chemotherapy drugs. We report here on the alkylated DNA-protein alkyltransferase, SsOGT, from an archaeal species living at high temperature, a condition that enhances the harmful effect of DNA alkylation. The exceptionally high stability of SsOGT gave us the unique opportunity to perform structural and biochemical analysis of a protein of this class in its post-reaction form. This analysis, along with those performed on SsOGT in its ligand-free and DNA-bound forms, provides insights in the structure-function relationships of the protein before, during and after DNA repair, suggesting a molecular basis for DNA recognition, catalytic activity and protein post-reaction fate, and giving hints on the mechanism of alkylation-induced inactivation of this class of proteins.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Reparo do DNA , Alquil e Aril Transferases/genética , Alquilação , Proteínas Arqueais/genética , DNA/metabolismo , Estabilidade Enzimática , Modelos Moleculares , Mutação , Relação Estrutura-Atividade , Sulfolobus solfataricus/enzimologia
2.
Extremophiles ; 20(1): 1-13, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26499124

RESUMO

In the last decade, a powerful biotechnological tool for the in vivo and in vitro specific labeling of proteins (SNAP-tag™ technology) was proposed as a valid alternative to classical protein-tags (green fluorescent proteins, GFPs). This was made possible by the discovery of the irreversible reaction of the human alkylguanine-DNA-alkyl-transferase (hAGT) in the presence of benzyl-guanine derivatives. However, the mild reaction conditions and the general instability of the mesophilic SNAP-tag™ make this new approach not fully applicable to (hyper-)thermophilic and, in general, extremophilic organisms. Here, we introduce an engineered variant of the thermostable alkylguanine-DNA-alkyl-transferase from the Archaea Sulfolobus solfataricus (SsOGT-H5), which displays a catalytic efficiency comparable to the SNAP-tag™ protein, but showing high intrinsic stability typical of proteins from this organism. The successful heterologous expression obtained in a thermophilic model organism makes SsOGT-H5 a valid candidate as protein-tag for organisms living in extreme environments.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas Arqueais/metabolismo , Sulfolobus solfataricus/enzimologia , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , DNA/metabolismo , Estabilidade Enzimática , Temperatura Alta , Dados de Sequência Molecular , Ligação Proteica , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sulfolobus solfataricus/genética
3.
Extremophiles ; 18(5): 895-904, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25102812

RESUMO

Repair and defence of genome integrity from endogenous and environmental hazard is a primary need for all organisms. Natural selection has driven the evolution of multiple cell pathways to deal with different DNA damaging agents. Failure of such processes can hamper cell functions and induce inheritable mutations, which in humans may cause cancerogenicity or certain genetic syndromes, and ultimately cell death. A special case is that of hyperthermophilic bacteria and archaea, flourishing at temperatures higher than 80 °C, conditions that favor genome instability and thus call for specific, highly efficient or peculiar mechanisms to keep their genome intact and functional. Over the last few years, numerous studies have been performed on the activity, function, regulation, physical and functional interaction of enzymes and proteins from hyperthermophilic microorganisms that are able to bind, repair, bypass damaged DNA, or modify its structure or conformation. The present review is focused on two enzymes that act on DNA catalyzing unique reactions: reverse gyrase and DNA alkyltransferase. Although both enzymes belong to evolutionary highly conserved protein families present in organisms of the three domains (Eucarya, Bacteria and Archaea), recently characterized members from hyperthermophilic archaea show both common and peculiar features.


Assuntos
Alquil e Aril Transferases/genética , Archaea/genética , Proteínas Arqueais/genética , Bactérias/genética , Proteínas de Bactérias/genética , DNA Topoisomerases Tipo I/genética , Instabilidade Genômica , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Archaea/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , Dados de Sequência Molecular
4.
Int J Mol Sci ; 15(9): 17162-87, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25257534

RESUMO

In all organisms of the three living domains (Bacteria, Archaea, Eucarya) chromosome-associated proteins play a key role in genome functional organization. They not only compact and shape the genome structure, but also regulate its dynamics, which is essential to allow complex genome functions. Elucidation of chromatin composition and regulation is a critical issue in biology, because of the intimate connection of chromatin with all the essential information processes (transcription, replication, recombination, and repair). Chromatin proteins include architectural proteins and DNA topoisomerases, which regulate genome structure and remodelling at two hierarchical levels. This review is focussed on architectural proteins and topoisomerases from hyperthermophilic Archaea. In these organisms, which live at high environmental temperature (>80 °C <113 °C), chromatin proteins and modulation of the DNA secondary structure are concerned with the problem of DNA stabilization against heat denaturation while maintaining its metabolic activity.


Assuntos
Archaea/fisiologia , Proteínas Arqueais/fisiologia , Cromatina/ultraestrutura , DNA Topoisomerases/fisiologia , Temperatura Alta , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Cromatina/metabolismo , Clima , DNA Topoisomerases/genética , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/fisiologia , DNA Arqueal/química , DNA Arqueal/genética , DNA Arqueal/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica em Archaea , Genes Arqueais , Histonas/química , Histonas/genética , Histonas/fisiologia , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
5.
J Biol Chem ; 287(6): 4222-31, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22167184

RESUMO

Agents that form methylation adducts in DNA are highly mutagenic and carcinogenic, and organisms have evolved specialized cellular pathways devoted to their repair, including DNA alkyltransferases. These are proteins conserved in eucarya, bacteria and archaea, acting by a unique reaction mechanism, which leads to direct repair of DNA alkylation damage and irreversible protein alkylation. The alkylated form of DNA alkyltransferases is inactive, and in eukaryotes, it is rapidly directed to degradation. We report here in vitro and in vivo studies on the DNA alkyltransferase from the thermophilic archaeon Sulfolobus solfataricus (SsOGT). The development of a novel, simple, and sensitive fluorescence-based assay allowed a careful characterization of the SsOGT biochemical and DNA binding activities. In addition, transcriptional and post-translational regulation of SsOGT by DNA damage was studied. We show that although the gene transcription is induced by alkylating agent treatment, the protein is degraded in vivo by an alkylation-dependent mechanism. These experiments suggest a striking conservation, from archaea to humans, of this important pathway safeguarding genome stability.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas Arqueais/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , DNA Arqueal/metabolismo , Sulfolobus solfataricus/enzimologia , Alquil e Aril Transferases/genética , Alquilação/fisiologia , Proteínas Arqueais/genética , DNA Arqueal/genética , Sulfolobus solfataricus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA