Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioorg Chem ; 144: 107112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237390

RESUMO

We report here the virtual screening design, synthesis and activity of eight new inhibitors of SphK1. For this study we used a pre-trained Graph Convolutional Network (GCN) combined with docking calculations. This exploratory analysis proposed nine compounds from which eight displayed significant inhibitory effect against sphingosine kinase 1 (SphK1) demonstrating a high level of efficacy for this approach. Four of these compounds also displayed anticancer activity against different tumor cell lines, and three of them (5), (6) and (7) have shown a wide inhibitory action against many of the cancer cell line tested, with GI50 below 5 µM, being (5) the most promising with TGI below 10 µM for the half of cell lines. Our results suggest that the three most promising compounds reported here are the pyrimidine-quinolone hybrids (1) and (6) linked by p-aminophenylsulfanyl and o-aminophenol fragments respectively, and (8) without such aryl linker. We also performed an exhaustive study about the molecular interactions that stabilize the different ligands at the binding site of SphK1. This molecular modeling analysis was carried out by using combined techniques: docking calculations, MD simulations and QTAIM analysis. In this study we also included PF543, as reference compound, in order to better understand the molecular behavior of these ligands at the binding site of SphK1.These results provide useful information for the design of new inhibitors of SphK1 possessing these structural scaffolds.


Assuntos
Antineoplásicos , Fosfotransferases (Aceptor do Grupo Álcool) , Quinolonas , Quinolonas/farmacologia , Inibidores de Proteínas Quinases , Antineoplásicos/química , Modelos Moleculares , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Relação Estrutura-Atividade , Estrutura Molecular
2.
J Comput Chem ; 41(21): 1898-1911, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32511790

RESUMO

We report an exhaustive conformational and electronic study on dopamine (DA) interacting with the D2 dopamine receptor (D2 DR). For the first time, the complete surface of the conformational potential energy of the complex DA/D2 DR is reported. Such a surface was obtained through the use of QM/MM calculations. A detailed study of the molecular interactions that stabilize and destabilize the different molecular complexes was carried out using two techniques: Quantum Theory of Atoms in Molecules computations and nuclear magnetic shielding constants calculations. A comparative study of the behavior of DA in the gas phase, aqueous solution, and in the active site of D2 DR has allowed us to evaluate the degree of deformation suffered by the ligand and, therefore, analyze how rustic are the lock-key model and the induced fit theory in this case. Our results allow us to propose one of the conformations obtained as the "biologically relevant" conformation of DA when it is interacting with the D2 DR.


Assuntos
Teoria da Densidade Funcional , Dopamina/química , Receptores de Dopamina D2/química , Elétrons , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
3.
Bioorg Chem ; 103: 104145, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32801082

RESUMO

The oncogenic mutated kinase BRAFV600E is an attractive molecular target because it is expressed in several human cancers, including melanoma. To present, only three BRAF small inhibitors are approved by the FDA for the treatment of patients with metastatic melanoma: Vemurafenib, Dabrafenib and Encorafenib. Although many protocol treatments have been probed in clinical trials, BRAF inhibition has a limited effectiveness because patients invariably develop resistance and secondary toxic effects associated with the therapy. These limitations highlight the importance of designing new and better inhibitors with different structures that could establish different interactions in the active site of the enzyme and therefore decrease resistance progress. Considering the data from our previous report, here we studied two series of derivatives of structural scaffolds as potential BRAF inhibitors: hydroxynaphthalenecarboxamides and substituted piperazinylpropandiols. Our results indicate that structural analogues of substituted piperazinylpropandiols do not show significantly better activities to that previously reported. In contrast, the hydroxynaphthalenecarboxamides derivatives significantly inhibited cell viability and ERK phosphorylation, a measure of BRAF activity, in Lu1205 BRAFV600E melanoma cells. In order to better understand these experimental results, we carried out a molecular modeling study using different combined techniques: docking, MD simulations and quantum theory of atoms in molecules (QTAIM) calculations. Thus, by using this approach we determined that the molecular interactions that stabilize the different molecular complexes are closely related to Vemurafenib, a well-documented BRAF inhibitor. Furthermore, we found that bi-substituted compounds may interact more strongly respect to the mono-substituted analogues, by establishing additional interactions with the DFG-loop at the BRAF-active site. On the bases of these results we synthesized and tested a new series of hydroxynaphthalenecarboxamides bi-substituted. Remarkably, all these compounds displayed significant inhibitory effects on the bioassays performed. Thus, the structural information reported here is important for the design of new BRAFV600E inhibitors possessing this type of structural scaffold.


Assuntos
Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Antineoplásicos/farmacologia , Humanos , Modelos Moleculares , Fosforilação
4.
Bioorg Chem ; 94: 103414, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31757412

RESUMO

Sphingosine-1-phosphate is now emerging as an important player in cancer, inflammation, autoimmune, neurological and cardiovascular disorders. Abundance evidence in animal and humans cancer models has shown that SphK1 is linked to cancer. Thus, there is a great interest in the development new SphK1 inhibitors as a potential new treatment for cancer. In a search for new SphK1 inhibitors we selected the well-known SKI-II inhibitor as the starting structure and we synthesized a new inhibitor structurally related to SKI-II with a significant but moderate inhibitory effect. In a second approach, based on our molecular modeling results, we designed new structures based on the structure of PF-543, the most potent known SphK1 inhibitor. Using this approach, we report the design, synthesis and biological evaluation of a new series of compounds with inhibitory activity against both SphK1 and SphK2. These new inhibitors were obtained incorporating new connecting chains between their polar heads and hydrophobic tails. On the other hand, the combined techniques of molecular dynamics simulations and QTAIM calculations provided complete and detailed information about the molecular interactions that stabilize the different complexes of these new inhibitors with the active sites of the SphK1. This information will be useful in the design of new SphK inhibitors.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Pirimidinas/uso terapêutico , Desenho de Fármacos , Humanos , Modelos Moleculares , Pirimidinas/farmacologia
5.
Arch Pharm (Weinheim) ; 352(3): e1800298, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30648282

RESUMO

The synthesis of inhibitors of SphK2 with novel structural scaffolds is reported. These compounds were designed from a molecular modeling study, in which the molecular interactions stabilizing the different complexes were taken into account. Particularly interesting is that 7-bromo-2-(2-phenylethyl)-2,3,4,5-tetrahydro-1,4-epoxynaphtho[1,2-b]azepine, which is a selective inhibitor of SphK2, does not exert any cytotoxic effects and has a potent anti-inflammatory effect. It was found to inhibit mononuclear cell adhesion to the dysfunctional endothelium with minimal impact on neutrophil-endothelial cell interactions. The information obtained from our theoretical and experimental study can be useful in the search for inhibitors of SphK2 that play a prominent role in different diseases, especially in inflammatory and cardiovascular disorders.


Assuntos
Anti-Inflamatórios/síntese química , Azepinas/síntese química , Inibidores Enzimáticos/síntese química , Compostos de Epóxi/síntese química , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/toxicidade , Azepinas/química , Azepinas/farmacologia , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/toxicidade , Compostos de Epóxi/química , Compostos de Epóxi/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Simulação de Acoplamento Molecular , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Ligação Proteica , Relação Estrutura-Atividade
6.
J Comput Aided Mol Des ; 32(7): 781-791, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29971548

RESUMO

We report here the results of two theoretical models to predict the inhibitory effect of inhibitors of sphingosine kinase 1 that stand on different computational basis. The active site of SphK1 is a complex system and the ligands under the study possess a significant conformational flexibility; therefore for our study we performed extended simulations and proper clusterization process. The two theoretical approaches used here, hydrogen bond dynamics propensity analysis and Quantum Theory of Atoms in Molecules (QTAIM) calculations, exhibit excellent correlations with the experimental data. In the case of the hydrogen bond dynamics propensity analysis, it is remarkable that a rather simple methodology with low computational requirements yields results in excellent accord with experimental data. In turn QTAIM calculations are much more computational demanding and are also more complex and tedious for data analysis than the hydrogen bond dynamic propensity analysis. However, this greater computational effort is justified because the QTAIM study, in addition to giving an excellent correlation with the experimental data, also gives us valuable information about which parts or functional groups of the different ligands are those that should be replaced in order to improve the interactions and thereby to increase the affinity for SphK1. Our results indicate that both approaches can be very useful in order to predict the inhibiting effect of new compounds before they are synthesized.


Assuntos
Simulação de Acoplamento Molecular/métodos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/química , Inibidores de Proteínas Quinases/química , Teoria Quântica , Domínio Catalítico , Ligação de Hidrogênio , Cinética , Ligantes , Ligação Proteica , Relação Estrutura-Atividade , Termodinâmica
7.
Eur J Med Chem ; 208: 112792, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32949964

RESUMO

In medicinal chemistry, it is extremely important to evaluate, as accurately as possible, the molecular interactions involved in the formation of different ligand-receptor (L-R) complexes. Evaluating the different molecular interactions by quantum mechanics calculations is not a simple task, since formation of an L-R complex is a dynamic process. In this case, the use of combined techniques of molecular dynamics (MD) and quantum calculations is one the best possible approaches. In this work we report a comparative study using combined MD and QTAIM (Quantum Theory of Atoms In Molecules) calculations for five biological systems with different levels of structural complexity. We have studied Acetylcholinesterase (AChE), D2 Dopamine Receptor (D2DR), beta Secretase (BACE1), Dihydrofolate Reductase (DHFR) and Sphingosine Kinase 1 (SphK1). In these molecular targets, we have analyzed different ligands with diverse structural characteristics. The inhibitory activities of most of them have been previously measured in our laboratory. Our results indicate that QTAIM calculations can be extremely useful for in silico studies. It is possible to obtain very accurate information about the strength of the molecular interactions that stabilize the formation of the different L-R complexes. Better correlations can be obtained between theoretical and experimental data by using QTAIM calculations, allowing us to discriminate among ligands with similar affinities. QTAIM analysis gives fairly accurate information for weak interactions which are not well described by MD simulations. QTAIM study also allowed us to evaluate and determine which parts of the ligand need to be modified in order to increase its interactions with the molecular target. In this study we have discussed the importance of combined MD/QTAIM calculations for this type of simulations, showing their scopes and limitations.


Assuntos
Acetilcolinesterase/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Dopamina D2/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Acetilcolinesterase/química , Secretases da Proteína Precursora do Amiloide/química , Ligantes , Modelos Químicos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/química , Teoria Quântica , Receptores de Dopamina D2/química , Tetra-Hidrofolato Desidrogenase/química , Termodinâmica
8.
Eur J Med Chem ; 139: 461-481, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28822281

RESUMO

Sphingosine kinase 1 (SphK1), the enzyme that produces the bioactive sphingolipid metabolite, sphingosine-1-phosphate, is a promising new molecular target for therapeutic intervention in cancer and inflammatory diseases. In view of its importance, the main objective of this work was to find new and more potent inhibitors for this enzyme possessing different structural scaffolds than those of the known inhibitors. Our theoretical and experimental study has allowed us to identify two new structural scaffolds (three new compounds), which could be used as starting structures for the design and then the development of new inhibitors of SphK1. Our study was carried out in different steps: virtual screening, synthesis, bioassays and molecular modelling. From our results, we propose a new dihydrobenzo[b]pyrimido[5,4-f]azepine and two alkyl{3-/4-[1-hydroxy-2-(4-arylpiperazin-1-yl)ethyl]phenyl}carbamates as initial structures for the development of new inhibitors. In addition, our molecular modelling study using QTAIM calculations, allowed us to describe in detail the molecular interactions that stabilize the different Ligand-Receptor complexes. Such analyses indicate that the cationic head of the different compounds must be refined in order to obtain an increase in the binding affinity of these ligands.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Relação Dose-Resposta a Droga , Modelos Moleculares , Estrutura Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Teoria Quântica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA