Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Pharm Res ; 35(6): 117, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29663141

RESUMO

PURPOSE: Poor corneal permeability, nasolacrimal drainage and requirement of chronic administration are major drawbacks of existing therapies for ocular inflammation. Hence, we designed topical micelles of PEG2000 conjugated with cholecalciferol (PEGCCF). METHODS: Integrin targeted tacrolimus loaded PEGCCF micelles (TTM) were prepared by solvent diffusion evaporation method and characterized for particle size, osmolality, encapsulation efficiency and drug loading. Therapeutic potential of TTM was evaluated in benzalkonium chloride induced ocular inflammation model in BALB/c mice. Corneal flourescein staining and histopathological analysis of corneal sections was performed. RESULTS: TTM had a particle size of 45.3 ± 5.3 nm, encapsulation efficiency (88.7 ± 0.9%w/w) and osmolality of 292-296 mOsmol/Kg. TTM significantly reduced the corneal fluorescence as compared to tacrolimus suspension (TACS). H&E staining showed that TTM could restore corneal epithelial thickness, reduce stromal edema (p < 0.05) and decrease number of inflammatory cells (p < 0.01) compared with TACS. Immunohistochemistry analysis demonstrated lower expression of Ki67 + ve cells (p < 0.05) and IL-6 throughout the cornea against TACS (p < 0.01) and the control (p < 0.001). CONCLUSIONS: TTM is an innovative delivery system for improving ocular inflammation due to a) integrin targeting b) PEGCCF in the form of carrier and c) anti-inflammatory and synergistic effect (due to Pgp inhibition) with TAC.


Assuntos
Portadores de Fármacos/química , Oftalmopatias/tratamento farmacológico , Inflamação/tratamento farmacológico , Tacrolimo/administração & dosagem , Administração Oftálmica , Animais , Compostos de Benzalcônio/toxicidade , Colecalciferol/química , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Olho/efeitos dos fármacos , Olho/patologia , Oftalmopatias/induzido quimicamente , Oftalmopatias/patologia , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Integrinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Polietilenoglicóis/química , Tacrolimo/farmacocinética
2.
AAPS PharmSciTech ; 19(8): 3550-3560, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30187446

RESUMO

The biocompatibility of cationic liposomes has led to their clinical translation in gene delivery and their application apart from cancer to cardiovascular diseases, osteoporosis, metabolic diseases, and more. We have prepared PEGylated stearyl amine (pegSA) lipoplexes meticulously considering the physicochemical properties and formulation parameters to prepare single unilamellar vesicles (SUV) of < 100 nm size which retain their SUV nature upon complexation with pDNA rather than the conventional lipoplexes which show multilamellar nature. The developed PEGylated SA lipoplexes (pegSA lipoplexes) showed a lower N/P ratio (1.5) for BMP-9 gene complexation while maintaining the SUV character with a unique shape (square and triangular lipoplexes). Colloidal and pDNA complexation stability in the presence of electrolytes and serum indicates the suitability for intravenous administration for delivery of lipoplexes to bone marrow mesenchymal stem cells through sinusoidal vessels in bone marrow. Moreover, lower charge density of lipoplexes and low oxidative stress led to lower toxicity of lipoplexes to the C2C12 cells, NIH 3T3 cells, and erythrocytes. Transfection studies showed efficient gene delivery to C2C12 cells inducing osteogenic differentiation through BMP-9 expression as shown by enhanced calcium deposition in vitro, proving the potential of lipoplexes for bone regeneration. In vivo acute toxicity studies further demonstrated safety of the developed lipoplexes. Developed pegSA lipoplexes show potential for further in vivo preclinical evaluation to establish the proof of concept.


Assuntos
Aminas/química , Técnicas de Transferência de Genes , Fator 2 de Diferenciação de Crescimento/genética , Lipossomos/química , Osteogênese , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Coloides/química , Humanos , Camundongos
3.
AAPS PharmSciTech ; 19(7): 3287-3297, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30218267

RESUMO

Primary standard therapy for ER-positive breast cancer being tamoxifen, newer delivery approach for enhancement of dissolution and therapeutic efficiency of tamoxifen through oral route could be a possible solution. In the present study, we investigated combination of tamoxifen (TAM) with resveratrol (RES) and observed that the combination is effective on MCF-7 breast cancer cells. To ensure co-delivery of the drugs, we explored the hot melt extrusion technique for simultaneously extruding two drugs together in order to enhance their bioavailability. As both are class II drugs with dissolution limited bioavailability, detailed formulation and process parameter analyses were carried out. Detailed characterization using microscopy, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray powder diffraction (XRD) confirmed that both the drugs were molecularly dispersed in the matrix of Soluplus, CremophorRH40, and Poloxamer188, and no interactions between the ingredients were there during hot melt extrusion (HME) process. Dissolution studies confirmed that HME extrudates were able to release drug more rapidly than simple suspension formulation. Further, pharmacokinetic studies in rats were carried out for tamoxifen. Results demonstrated that extrusion significantly increased the tamoxifen oral bioavailability (p < 0.05) (Tmax = 2.00 ± 0.56 h, Cmax = 3.66 ± 1.49 µg/mL, AUC = 39.80 ± 16.24 µg h/mL, MRT = 20.49 ± 5.71) compared to the conventional suspension of tamoxifen (Tmax = 2.00 ± 0.71 h, Cmax = 2.41 ± 0.84 µg/mL, AUC = 12.82 ± 3.99 µg h/mL, MRT = 18.24 ± 5.95 h). In vitro cytotoxicity studies of TAM, RES, and their combination (TAM-RES) were evaluated with MCF7 cells. The combination showed significantly lower IC50 compared to TAM with increasing ratio of RES which is a result of apoptosis. HME-based simultaneous extrusion of TAM and RES formulation provides a suitable formulation strategy for breast cancer treatment and establishes proof of concept for extruding multiple drugs simultaneously for other applications in future.


Assuntos
Antineoplásicos Hormonais/administração & dosagem , Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias da Mama , Desenvolvimento de Medicamentos/métodos , Resveratrol/administração & dosagem , Tamoxifeno/administração & dosagem , Administração Oral , Animais , Antineoplásicos Hormonais/química , Antineoplásicos Hormonais/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Sinergismo Farmacológico , Temperatura Alta , Humanos , Células MCF-7 , Ratos , Ratos Sprague-Dawley , Resveratrol/química , Resveratrol/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Tamoxifeno/química , Tamoxifeno/metabolismo , Difração de Raios X/métodos
4.
AAPS PharmSciTech ; 19(2): 792-802, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29019073

RESUMO

Triple-negative breast cancer (TNBC) is the leading cancer in women. Chemotherapeutic agents used for TNBC are mainly associated with dose-dependent toxicities and development of resistance. Hence, novel strategies to overcome resistance and to offer dose reduction are warranted. In this study, we designed a novel dual-functioning agent, conjugate of cholecalciferol with PEG2000 (PEGCCF) which can self-assemble into micelles to encapsulate doxorubicin (DOX) and act as a chemosensitizer to improve the therapeutic potential of DOX. DOX-loaded PEGCCF (PEGCCF-DOX) micelles have particle size, polydispersity index (PDI), and zeta potential of 40 ± 8.7 nm, 0.180 ± 0.051, and 2.39 ± 0.157 mV, respectively. Cellular accumulation studies confirmed that PEGCCF was able to concentration-dependently enhance the cellular accumulation of DOX and rhodamine 123 in MDA-MB-231 cells through its P-glycoprotein (P-gp) inhibition activity. PEGCCF-DOX exhibited 1.8-, 1.5-, and 2.9-fold enhancement in cytotoxicity of DOX in MDA-MB-231, MDA-MB-468, and MDA-MB-231DR (DOX-resistant) cell lines, respectively. Western blot analyses showed that PEGCCF-DOX caused significant reduction in tumor markers including mTOR, c-Myc, and antiapoptotic marker Bcl-xl along with upregulation of preapoptotic marker Bax. Further, reduction in mTOR activity by PEGCCF-DOX indicates reduced P-gp activity due to P-gp downregulation as well and, hence, PEGCCF causes enhanced chemosensitization and induces apoptosis. Substantially enhanced apoptotic activity of DOX (10-fold) in MDA-MB-231(DR) cells confirmed apoptotic potential of PEGCCF. Conclusively, PEGCCF nanomicelles are promising delivery systems for improving anticancer activity of DOX in TNBC, thereby reducing its side effects and may act as a potential carrier for other chemotherapeutic agents.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Colecalciferol/química , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Polietilenoglicóis/química , Neoplasias de Mama Triplo Negativas/metabolismo , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Feminino , Humanos , Micelas , Nanoestruturas , Tamanho da Partícula , Serina-Treonina Quinases TOR/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
5.
Pharm Res ; 34(11): 2371-2384, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28875330

RESUMO

PURPOSE: Non-small cell lung cancer is the leading cause of cancer related deaths globally. Considering the side effects and diminishing chemosensitivity to chemotherapy, novel treatment approaches are sought. Hence, we aim to develop a liposomal co-delivery system of pDNA expressing shRNA against PFKFB3 (pshPFKFB3) and docetaxel (DTX). METHODS: Cationic DTX liposomes complexed with pshPFKFB3 (PSH-DL) were developed. In vitro cell line studies were performed to evaluate transfection, PFKFB3 mRNA silencing, cytotoxicity, pGP inhibition, and protein markers expression. In vivo efficacy study was performed in A549 xenograft nude mice model. RESULTS: Cytotoxicity studies showed significantly enhanced anticancer activity of PSH-DL against individual treatment alone confirming the chemoenhancing effect of pshPFKFB3 on DTX activity. Fluorescence microscopy and RT-PCR showed effective transfection and RNAi by pshPFKFB3. pGP inhibition assay and western blotting revealed that PFKFB3 downregulation caused diminution of pGP activity leading to changes in cell cycle (Cdk2), survival (survivin), apoptosis (Bcl2 and cleaved caspase 3) and stress (p-JNK and p-p38) markers so that induces apoptosis by PSH-DL in NSCLC cells. PSH-DL also showed ~3.8-fold reduction in tumor volume in A549 xenograft model which was significantly higher than individual treatments alone. CONCLUSION: Targeting PFKFB3 through shRNA based RNAi is a promising approach for potentiating activity of DTX in NSCLC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Lipossomos/química , Neoplasias Pulmonares/tratamento farmacológico , Fosfofrutoquinase-2/genética , RNA Interferente Pequeno/genética , Taxoides/farmacologia , Animais , Antineoplásicos/química , Apoptose , Caspase 3/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Docetaxel , Combinação de Medicamentos , Inativação Gênica , Técnicas de Transferência de Genes , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , Camundongos Nus , Tamanho da Partícula , Fosfofrutoquinase-2/metabolismo , Plasmídeos , Complexo de Inativação Induzido por RNA/metabolismo , Propriedades de Superfície , Taxoides/química , Carga Tumoral/efeitos dos fármacos
6.
AAPS PharmSciTech ; 15(4): 845-57, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24700295

RESUMO

Cisplatin, first (platinum) compound to be evolved as an anticancer agent, has found its important place in cancer chemotherapy. However, the dose-dependent toxicities of cisplatin, namely nephrotoxicity, ototoxicity, peripheral neuropathy, and gastrointestinal toxicity hinder its widespread use. Liposomes can reduce the toxicity of cisplatin and provide a better therapeutic action, but the low lipid solubility of cisplatin hinders its high entrapment in such lipid carrier. In the present investigation, positively charged reactive aquated species of cisplatin were complexed with negatively charged caprylate ligands, resulting in enhanced interaction of cisplatin with lipid bilayer of liposomes and increase in its encapsulation in liposomal carrier. Prepared cisplatin liposomes were found to have a vesicular size of 107.9 ± 6.2 nm and zeta potential of -3.99 ± 3.45 mV. The optimized liposomal formulation had an encapsulation efficiency of 96.03 ± 1.24% with unprecedented drug loading (0.21 mg cisplatin / mg of lipids). The in vitro release studies exhibited a pH-dependent release of cisplatin from liposomes with highest release (67.55 ± 3.65%) at pH 5.5 indicating that a maximum release would occur inside cancer cells at endolysosomal pH. The prepared liposomes were found to be stable in the serum and showed a low hemolytic potential. In vitro cytotoxicity of cisplatin liposomes on A549 lung cancer cell line was comparable to that of cisplatin solution. The developed formulation also had a significantly higher median lethal dose (LD50) of 23.79 mg/kg than that of the cisplatin solution (12 mg/kg). A promising liposomal formulation of cisplatin has been proposed that can overcome the disadvantages associated with conventional cisplatin therapy and provide a higher safety profile.


Assuntos
Caprilatos/química , Cisplatino/química , Lipossomos/química , Animais , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Portadores de Fármacos/química , Feminino , Humanos , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Camundongos , Tamanho da Partícula , Fosfolipídeos/química , Solubilidade
7.
AAPS PharmSciTech ; 15(6): 1630-43, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25145330

RESUMO

Cationic liposomes have long been used as non-viral vectors for small interfering RNA (siRNA) delivery but are associated with high toxicity, less transfection efficiency, and in vivo instability. In this investigation, we have developed siRNA targeted to RRM1 that is responsible for development of resistance to gemcitabine in cancer cells. Effect of different lipid compositions has been evaluated on formation of stable and less toxic lipoplexes. Optimized cationic lipoplex (D2CH) system was comprised of dioleoyl-trimethylammoniumpropane (DOTAP), dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), hydrogenated soya phosphocholine (HSPC), cholesterol, and methoxy(polyethyleneglycol)2000-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (mPEG2000-DSPE). D2CH lipoplexes have shown particle size (147.5 ± 2.89 nm) and zeta potential (12.26 ± 0.54 mV) characteristics essential for their in vivo use. In vitro cytotoxicity study has shown low toxicity of developed lipoplexes as compared with lipofectamine-2000 up to N/P ratio as high as 7.5. Cell uptake studies and gene expression studies have confirmed intracellular availability of siRNA. In addition, developed lipoplexes also showed ~3 times less hemolytic potential as compared with DOTAP/DOPE lipoplexes at lipid concentration of 5 mg/mL. Lipoplexes also maintained particle size less than 200 nm on exposure to high electrolyte concentration and showed >70% siRNA retention in presence of serum showing siRNA protection conferred by lipoplexes. Furthermore, in vivo acute toxicity studies in mice showed that formulation was non-toxic up to a dosage of 0.75 mg of siRNA/kg as lipoplexes and 300 mg lipid/kg as blank liposomes indicating tolerability of lipoplexes at a dose much higher than required for therapeutic use. Promising results of this study warrant further investigation of developed siRNA lipoplexes for cancer treatment.


Assuntos
Terapia Genética/métodos , Lipídeos/química , Neoplasias/terapia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transfecção/métodos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Hemólise/efeitos dos fármacos , Humanos , Lipídeos/toxicidade , Lipossomos , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Tamanho da Partícula , Estabilidade de RNA , RNA Interferente Pequeno/sangue , RNA Interferente Pequeno/química , Ribonucleosídeo Difosfato Redutase , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
Drug Deliv Transl Res ; 11(5): 2052-2071, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33174096

RESUMO

The resistance of cancer cells to chemotherapy has presented a formidable challenge. The current research aims at evaluating whether silencing of the cisplatin efflux promoter gene ABCC3 using siRNA co-loaded with the drug in a nanocarrier improves its efficacy in non-small cell lung cancer (NSCLC). Hybrid nanocarriers (HNCs) comprising lipids and poly(lactic acid-polyethylene glycol) di-block copolymer (PEG-PLA) were prepared for achieving the simultaneous delivery of cisplatin caprylate and ABCC3-siRNA to the cancer cells. PEGylation of the formulated HNCs was carried out using post-insertion technique for imparting long circulation characteristics to the carrier. The optimized formulation exhibited an entrapment efficiency of 71.9 ± 2.2% and 95.83 ± 0.39% for cisplatin caprylate and siRNA respectively. Further, the HNC was found to have hydrodynamic diameter of 153.2 ± 1.76 nm and + 25.39 ± 0.49 mV zeta potential. Morphological evaluation using cryo transmission electron microscopy confirmed the presence of lipid bilayer surrounding the polymeric core in HNCs. The in vitro cellular uptake studies showed improved uptake, while cell viability studies of the co-loaded formulation in A549 cell-line indicated significantly improved cytotoxic potential when compared with drug solution and drug-loaded HNCs; cell cycle analysis indicated increased percentage of cell arrest in G2-M phase compared with drug-loaded HNCs. Further, the gene knock-down study showed that silencing of ABCC3 mRNA might be improved in vitro efficacy of the formulation. The optimized cisplatin and ABCC3 siRNA co-loaded formulation presented significantly increased half-life and tumour regression in A549 xenograft model in BALB/c nude mice. In conclusion, siRNA co-loaded formulation presented reduced drug resistance and increased efficacy, which might be promising for the current cisplatin-based treatments in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , Polietilenoglicóis/uso terapêutico , RNA Interferente Pequeno
9.
Int J Pharm ; 563: 324-336, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30954673

RESUMO

Rational design of novel ionizable lipids for development of lipid-nucleic acid nanoparticles (LNP) is required for safe and effective systemic gene delivery for osteoporosis. LNPs require suitable characteristics for intravenous administration and effective accumulation in bone marrow for enhanced transfection. Hence, lipids with C18 tail and ionizable headgroup (Boc-His-ODA/BHODA and His-ODA/HODA) were synthesized and characterized physicochemically. LNPs were prepared with bone morphogenetic protein-9 gene (BHODA-LNP, HODA-LNP, and bone-homing peptide targeted HODA-LNP - HODA-LNPT). Thorough physicochemical (electrolyte stability, DNase I and serum stability) and biological (hemolysis, ROS induction, cytotoxicity and transfection) characterization was carried out followed by acute toxicity studies and therapeutic performance studies in ovariectomized rat model. Lipids with pH dependent ionization were successfully synthesized. LNPs thereof were ∼100 nm size with stability against electrolytes, DNase I and serum and exhibited low hemolytic potential demonstrating suitability for intravenous administration. LNPs exhibited minimal cytotoxicity, non-significant ROS induction and high transfection. In vivo studies demonstrated safety and improved bone regeneration in OVX rats with HODA-LNPT showing significantly better performance. Synthesized ionizable lipids offer safe and effective alternative for preparation of LNPs for gene delivery. Targeted BMP-9 LNP show potential for systemic osteoporosis treatment.


Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Fatores de Diferenciação de Crescimento/genética , Lipídeos/administração & dosagem , Nanopartículas/administração & dosagem , Osteogênese , Animais , Células da Medula Óssea/citologia , Linhagem Celular , Eritrócitos/fisiologia , Feminino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoporose/terapia , Ovariectomia , Plasmídeos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
10.
Int J Pharm ; 536(1): 95-107, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29175440

RESUMO

Combination strategy involving cyclodextrin (CD) complexation and liposomal system was investigated for Paclitaxel (PTX) to improve loading. Complexation was done using 2,6-di-O-methylbetacyclodextrin (DMßCD). Sterically stabilized double loaded PEGylated liposomes (DLPLs) containing PTX and PTX-DMßCD complex were prepared by thin film hydration. Physicochemical characterization of complex and prepared DLPLs was carried out. Cytotoxic potential, hemolytic potential and pharmacokinetics of DLPLs were tested in comparison to Taxol®. Aqueous solubility of PTX increased by almost 3 × 104 folds due to complexation with DMßCD as compared to pure drug solubility. Liposomal system was found to have 162.8 ± 4.1 nm size, zeta potential of -5.6 ± 0.14 mV and 2-fold increase in drug loading to 5.8 mol % for PTX due to double loading. DLPLs had low hemolytic potential and higher cytotoxicity on SKOV3 cells with improvement in IC50 value by 4.2 folds as compared to Taxol® at 48 h. The anti-angiogenic potential of DLPLs was confirmed by 1.33 folds lesser wound recovery in SKOV3 cells compared to Taxol®. In-vivo pharmacokinetic evaluation of DLPLs in rats substantiates improvement in circulation time, higher plasma concentration and decreased clearance rate compared to Taxol®. An efficacious system with improved loading and pharmacokinetics was formulated as potential alternative for currently marketed PTX formulation.


Assuntos
Ciclodextrinas/química , Lipossomos/química , Paclitaxel/química , Paclitaxel/farmacocinética , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacocinética , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Linhagem Celular Tumoral , Portadores de Fármacos/química , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley
11.
RSC Adv ; 8(62): 35461-35473, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35547911

RESUMO

Linear polyethylenimine (LPEI) has been well reported as a carrier for siRNA delivery. However, its applications are limited due to its highly ionized state at physiologic pH and the resultant charge mediated toxicity. The presence of ionizable secondary amines in LPE are responsible for its unique characteristics such as pH dependent solubility and positive charge. Therefore, modification of LPEI was carried out to obtain hydroxyethyl substituted LPEI with the degree of substitution ranging from 15% to 45%. The impact of modification on the physicochemical parameters of the polymer, i.e. buffer capacity, solubility, biocompatibility and stability, was evaluated. Surprisingly, despite the loss of ionizable amines, the substitution improved solubility, and even overcame the pH dependent solubility of LPEI. In addition, the conversion of secondary amines to less basic tertiary amines after substitution improved the buffer capacity, in the endosomal pH range, required for efficient endosomal escape. It also reduced erythrocyte aggregation, hemolytic potential and in vitro cytotoxicity. The in vitro studies showed enhanced cell uptake and mRNA knockdown efficiency. Thus, the proposed modification shows a simple approach to overcome the limitation of LPEI for siRNA delivery.

12.
Oncotarget ; 9(51): 29680-29697, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-30038713

RESUMO

Non-small cell lung cancers (NSCLC) account for 85% of all lung cancers, and the epidermal growth factor receptor (EGFR) is highly expressed or activated in many NSCLC that permit use of EGFR tyrosine kinase inhibitors (TKIs) as frontline therapies. Resistance to EGFR TKIs eventually develops that necessitates development of improved and effective therapeutics. CARP-1/CCAR1 is an effector of apoptosis by Doxorubicin, Etoposide, or Gefitinib, while CARP-1 functional mimetic (CFM) compounds bind with CARP-1, and stimulate CARP-1 expression and apoptosis. To test whether CFMs would inhibit TKI-resistant NSCLCs, we first generated and characterized TKI-resistant NSCLC cells. The GI 50 dose of Erlotinib for parental and Erlotinib-resistant HCC827 cells was ∼0.1 µM and ≥15 µM, respectively. While Rociletinib or Ocimertinib inhibited the parental H1975 cells with GI 50 doses of ≤0.18 µM, the Ocimertinib-resistant pools of H1975 cells had a GI50 dose of ∼12 µM. The GI50 dose for Rociletinib-resistant H1975 sublines ranged from 4.5-8.0 µM. CFM-4 and its novel analog CFM-4.16 attenuated growth of the parental and TKI-resistant NSCLC cells. CFMs activated p38/JNKs, inhibited oncogenic cMet and Akt kinases, while CARP-1 depletion blocked NSCLC cell growth inhibition by CFM-4.16 or Erlotinib. CFM-4.16 was synergistic with B-Raf-targeting in NSCLC, triple-negative breast cancer, and renal cancer cells. A nano-lipid formulation (NLF) of CFM-4.16 in combination with Sorafenib elicited a superior growth inhibition of xenografted tumors derived from Rociletinib-resistant H1975 NSCLC cells in part by stimulating CARP-1 and apoptosis. These findings support therapeutic potential of CFM-4.16 together with B-Raf targeting in treatment of TKI-resistant NSCLCs.

13.
Drug Deliv ; 23(4): 1152-62, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25586675

RESUMO

BACKGROUND: Epirubicin-HCl is highly efficient for breast cancer management at a concentration of 60-90 mg/m(2). However, its application is limited due to cumulative dose-dependent cardio-toxicity. PURPOSE: The main aim of this study was to formulate breast cancer-targeted liposomal carrier by surface conjugation of transferrin to minimize cardio-toxicity of drug along with improved pharmacokinetic profile. METHOD: Liposomes were formulated by ethanol injection method using HSPC, cholesterol and DSPG and later loaded with drug by the ammonium sulfate gradient method. The formulation was characterized for physicochemical properties like size, zeta potential, entrapment efficiency, TEM; in vitro tests like electro-flocculation, hemolysis and drug release; cell line study (MCF-7 cells); in vivo studies including LD50 determination, pharmacokinetic analysis, myocardial toxicity determination and stability. RESULTS AND DISCUSSION: Optimized formulation had molar ratio of 60:30:8:2 (HSPC:Chol:DSPG:mPEG-DSPE) with entrapment efficiency ∼83%, particle size below 200 nm and zeta potential about -20 mV. In vitro studies proved non-interfering property and drug release character of formulation while cell line studies demonstrated improvement in cell uptake and thereby increased cytotoxicity of targeted formulation. The IC50 value obtained for epirubicin solution, non-targeted and targeted liposomes was 0.675, 0.532 and 0.192 µg/ml, respectively. Furthermore, in vivo tests validated safety and distribution profile of prepared formulations. CONCLUSION: Apt properties of prepared Epirubicin-HCl liposomal formulation warrant its clinical application in breast cancer treatment after further studies.


Assuntos
Neoplasias da Mama/química , Colesterol/química , Epirubicina/química , Lipídeos/química , Células MCF-7 , Polietilenoglicóis/química , Transferrina/química , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Epirubicina/farmacocinética , Feminino , Humanos , Lipídeos/farmacocinética , Lipossomos , Tamanho da Partícula , Polietilenoglicóis/administração & dosagem , Transferrina/farmacocinética
14.
J Control Release ; 226: 148-67, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26860284

RESUMO

Ovarian cancer is the second most leading gynecological cancer after endometrial cancer in women. Chemotherapy and cyto-reductive surgery are currently the mainstays for treatment of ovarian cancer in early stages. However, the overall 5years of survival rate in advanced stage is just 20-30%. The main reasons behind therapeutic failures and a low survival rate are challenges in early diagnosis, frequent recurrence, chemo-resistance development and lack of targeting. Antibodies have evolved as a rationale therapeutic approach to overcome these hurdles and to engender significant clinical applications. Detection of cancer associated antibodies and radiolabeled antibody conjugates are forming the basis for early diagnosis of ovarian cancer. Besides this, antibodies when given alone act as an anti-angiogenic agent or utilize the protective role of immune system against ovarian cancer. This high specificity and selectivity of action is also accompanied by development of tumor antigen-specific memory T cells, which can prevent cancer recurrence. In addition, when given in combination with chemotherapy, antibodies have turned out to sensitize chemo-resistant tumors. Antibodies are also playing cardinal role in design of highly potent class of targeted therapies, such as antibody-drug conjugates and clinically viable tumor targeted drug nanocarriers. This article aims to explore the fundamentals in development of antibody based therapeutics and multitude ways of clinical applications in diagnosis and treatment of ovarian cancer. Focus is given on the recent advances made in preclinical and clinical settings with an overview to unmet challenges so as to develop better immunotherapeutics in future.


Assuntos
Anticorpos/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/terapia , Inibidores da Angiogênese/imunologia , Inibidores da Angiogênese/uso terapêutico , Animais , Anticorpos/imunologia , Antineoplásicos/imunologia , Ensaios Clínicos como Assunto , Feminino , Humanos , Imunoconjugados/imunologia , Imunoconjugados/uso terapêutico , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Ovário/efeitos dos fármacos , Ovário/imunologia , Ovário/patologia
15.
Curr Pharm Des ; 21(31): 4541-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26486141

RESUMO

The 'RNA interference' has emerged as a potential therapeutic strategy owing to its high specificity to silent any malfunctioned gene in diseases with genetic background. Currently intravenous delivery of siRNA has been a preferred way of administration due to high access of blood to the organs where direct delivery is not possible. Among non-viral delivery systems enabling systemic delivery of siRNA, liposomes and lipid envelope systems appear to be promising due to their biocompatibility over other systems. However, these systems are still challenged by toxicity issues, instability in blood, non-specific distribution and low transfection efficiency after intravenous administration. Therefore, to increase the success of lipid based siRNA delivery, it is essential to understand the importance of various factors affecting the efficiency of siRNA delivery. The current review focuses on the formulation of lipid based siRNA formulations, the challenges posed in systemic delivery and various aspects affecting the transfection efficiency of such formulations. The review also focuses on emerging strategies for lipid based siRNA delivery and overviews clinical prospects for better development of siRNA delivery systems in future. Considering the current trends, it seems that liposomes and lipid based envelope systems for systemic delivery of siRNA will translate into extensive clinical application overcoming the associated challenges in near future.


Assuntos
Lipídeos/química , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Animais , Técnicas de Transferência de Genes , Terapia Genética/métodos , Humanos , Lipossomos , Transfecção
16.
Artigo em Inglês | MEDLINE | ID: mdl-25819275

RESUMO

Protein- and peptide-drug conjugates hold a promising stance in the delivery of therapeutic agents by providing distinct advantage of improving therapeutic potential of drugs. Recent advancements in the proteomics and recombinant DNA technology, by enabling identification of distinct structural features of proteins and making it feasible to introduce specific functionalities in protein/peptide structure, has made it possible to synthesize high quality protein- and peptide-drug conjugates though a wide variety of coupling techniques. Additionally, use of specialized linkers makes them unique in their in vivo therapeutic application by providing target tissue-specific release of drug. Several protein- and peptide-drug conjugates are currently under clinical trials warranting their huge market potential in near future. Increased understanding in this field will surely enable us to produce high quality protein- and peptide-drug conjugates which will serve therapeutic needs demanded from drug delivery systems in clinical settings.


Assuntos
Antineoplásicos/química , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Albuminas/química , Anticorpos/química , Antineoplásicos/farmacologia , Peptídeos Penetradores de Células/química , Gelatina/química , Humanos , Imunoconjugados/química , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Oligopeptídeos/química , RNA Interferente Pequeno/química , Transferrina/química
17.
Curr Pharm Des ; 21(29): 4155-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26323432

RESUMO

The advent of recombinant DNA technology and computational designing has fueled the emergence of proteins and peptides as a new class of modern therapeutics such as vaccines, antigens, antibodies and hormones. Demand for such therapeutics has increased recently due to their distinct pharmacodynamic characteristics of specificity of action and high potency. However, their potential clinical applications are often hindered by involvement of factors which impact their therapeutic potential negatively. Large size, low permeability, conformational fragility, immunogenicity, metabolic degradation and short half-life results in poor bioavailability and inferior efficacy. These challenges have encouraged researchers to devise strategies for effective delivery of proteins and peptides. Recent advances made in nanotechnology are being sought to overcome aforesaid problems and to offer advantages such as higher drug loading, improved stability, sustained release, amenability for non-parenteral administration and targeting through surface modifications. This review focuses on elaborating the role of nanotechnology based formulations and associated challenges in protein and peptide delivery, their clinical outlook and future perspective.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Peptídeos/administração & dosagem , Proteínas/administração & dosagem , Animais , Portadores de Fármacos/administração & dosagem , Humanos , Peptídeos/imunologia , Peptídeos/farmacocinética , Peptídeos/uso terapêutico , Proteínas/imunologia , Proteínas/farmacocinética , Proteínas/uso terapêutico
18.
J Control Release ; 182: 45-57, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24631861

RESUMO

Development of effective vector for intracellular delivery of siRNA has always been a challenge due to its hydrophilicity, net negative surface charge and sensitivity against nucleases in biological milieu. The present investigation was aimed to develop a novel non-viral liposomal carrier for siRNA delivery. Nano-precipitate of calcium phosphate was entrapped in liposomes composed of a neutral lipid (DPPC), a fusogenic lipid (DOPE), a PEGylated lipid (DSPE-mPEG2000) and cholesterol. siRNA was made permeable through liposomal bilayer and complexed to calcium phosphate precipitates inside the liposomes. siRNA entrapped liposomes were further grafted with cRGD to achieve targeting potential against cancer cells. More than 80% of siRNA was entrapped inside the liposomes having average particle size below 150nm. Cryo-transmission electron microscopy revealed the intra-liposomal calcium phosphate precipitation and unilamellar morphology of prepared liposomes. The viability of A549 lung cancer cells was significantly higher after treatment with siRNA entrapped liposomes as compared to Lipofectamine2000 complexed siRNA. Fluorescent intensity in lung carcinoma cells was significantly higher after exposure to fluorescent siRNA entrapped liposomes than with Lipofectamine2000, which were confirmed by both confocal microscopy and flow cytometry. Live imaging by confocal microscopy ascertained the targeting efficacy of cRGD grafted liposomes compared to naked siRNA and non-grafted liposomes. Developed liposomal formulation showed effective protection of siRNA against serum nucleases along with less haemolytic potential and excellent stability against electrolyte induced flocculation. At 5nM concentration gene expression of target protein was reduced up to 24.1±3.4% while Lipofectamine2000 reduced expression level up to 26.35±1.55%. In vivo toxicity in mice suggested admirable safety profile for developed lipid based delivery vector. These results advocate that prepared liposomal system would be of high value for intracellular delivery of siRNA.


Assuntos
Peptídeos Cíclicos/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Transfecção/métodos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Feminino , Expressão Gênica , Hemólise/efeitos dos fármacos , Humanos , Lipossomos , Camundongos , Neoplasias/tratamento farmacológico , Peptídeos Cíclicos/química , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/química , Ratos Sprague-Dawley , Ribonucleosídeo Difosfato Redutase , Testes de Toxicidade Aguda , Proteínas Supressoras de Tumor/genética
19.
Ther Deliv ; 5(9): 1007-24, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25375343

RESUMO

Receptor-targeted drug delivery has been extensively explored for active targeting. However, the scarce clinical applications of such delivery systems highlight the implicit hurdles in development of such systems. These hurdles begin with lack of knowledge of differential expression of receptors, their accessibility and identification of newer receptors. Similarly, ligand-specific challenges range from proper choice of ligand and conjugation chemistry, to release of drug/delivery system from ligand. Finally, nanocarrier systems, which offer improved loading, biocompatibility and reduced premature degradation, also face multiple challenges. This review focuses on understanding these challenges, and means to overcome such challenges to develop efficient, targeted drug-delivery systems.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas/administração & dosagem , Receptores de Superfície Celular/metabolismo , Animais , Sítios de Ligação , Transporte Biológico , Química Farmacêutica , Formas de Dosagem , Humanos , Ligantes , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Ligação Proteica
20.
J Control Release ; 192: 67-81, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24997275

RESUMO

Polyethylene glycol (PEG) conjugation is a rapidly evolving strategy to solve hurdles in therapeutic delivery and is being used as an add-on tool to the traditional drug delivery methods. Chemically, PEGylation is a term used to denote modification of therapeutic molecules by conjugation with PEG. Efforts are constantly being made to develop novel strategies for conjugation of PEG with these molecules in order to increase its current applications. These strategies are specific to the therapeutic system used and also depend on the availability of activated PEGylating agents. Therefore, a prior knowledge is essential in selecting appropriate method for PEGylation. Once achieved, a successful PEGylation can amend the pharmacokinetic and pharmacodynamic outcomes of therapeutics. Specifically, the primary interest is in their ability to decrease uptake by reticuloendothelial system, prolong blood residence, decrease degradation by metabolic enzymes and reduce protein immunogenicity. The extensive research in this field has resulted into many clinical studies. The knowledge of outcome of these studies gave a good feedback and lessons which helped researchers to redesign PEG conjugates with improved features which can increase the chance of hitting the market. In light of this, the current paper highlights the approaches, novel strategies and the utilization of modern concept for PEG conjugation with respect to various bioactive components of clinical relevance. Moreover, this review also discusses potential clinical outcomes of the PEG conjugation, regulatory approved PEGylated product, clinical trials for newer formulations, and also provides future prospects of this technology.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Polietilenoglicóis/química , Animais , Técnicas de Transferência de Genes , Humanos , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA