Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Crit Rev Food Sci Nutr ; 63(20): 4655-4674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34839771

RESUMO

Most lipids in our diet come under the form of triacylglycerols that are often redispersed and stabilized by surfactants in processed foods. In plant however, lipid assemblies constitute interesting sources of natural bioactive and functional ingredients. In most photosynthetic sources, polar lipids rich in ω3 fatty acids are concentrated. The objective of this review is to summarize all the knowledge about the physico-chemical composition, digestive behavior and oxidative stability of plant polar lipid assemblies to emphasize their potential as functional ingredients in human diet and their potentialities to substitute artificial surfactants/antioxidants. The specific composition of plant membrane assemblies is detailed, including plasma membranes, oil bodies, and chloroplast; emphasizing its concentration in phospholipids, galactolipids, peculiar proteins, and phenolic compounds. These molecular species are hydrolyzed by specific digestive enzymes in the human gastrointestinal tract and reduced the hydrolysis of triacylglycerols and their subsequent absorption. Galactolipids specifically can activate ileal break and intrinsically present an antioxidant (AO) activity and metal chelating activity. In addition, their natural association with phenolic compounds and their physical state (Lα state of digalactosyldiacylglycerols) in membrane assemblies can enhance their stability to oxidation. All these elements make plant membrane molecules and assemblies very promising components with a wide range of potential applications to vectorize ω3 polyunsaturated fatty acids, and equilibrate human diet.


Assuntos
Galactolipídeos , Fosfolipídeos , Humanos , Galactolipídeos/metabolismo , Triglicerídeos/metabolismo , Oxirredução , Antioxidantes/metabolismo , Estresse Oxidativo
2.
Org Biomol Chem ; 18(2): 337-345, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31845706

RESUMO

A ramified lipid alcohol, 2-hexyldecanol, was used as a hydrophobic moiety to prepare cationic amphiphiles on a gram scale in 3 to 4 steps, featuring either a trimethylammonium 5, dimethylhydroxyethylammonium 6 or N-methylimidazolium 7 polar head group. Compression isotherms at the air-water interface reveal that all these cationic amphiphiles collapse at a relatively low pressure indicating a weak stabilization of the monolayer via hydrophobic interactions. Ellipsometry measurements point out the presence of a thin monolayer at low lateral pressure whereas thickening of the monolayer occurs at higher pressure with a high percentage of variation of the thickness, thus demonstrating an adaptability to the constraints. 31P NMR spectroscopy of the hydrated cationic amphiphiles clearly shows that these cationic amphiphiles self-assemble in water to form hexagonal phases, irrespective of the nature of their polar head group. Furthermore, a comparison of molecular structures suggests that compounds 5-7 self-organize into an inverted hexagonal phase (HII). These cationic amphiphiles, alone or in the presence of DOPE, were evaluated for the transfection of three human-derived cell lines (i.e. A549, 16HBE and HeLa). The three compounds demonstrated high transfection efficacies in every cell line tested, 7/DOPE being the most efficient.


Assuntos
Técnicas de Transferência de Genes , Lipídeos/química , Tensoativos/química , Lipossomas Unilamelares , Cátions , Linhagem Celular , Álcoois Graxos/química , Humanos , Lipídeos/síntese química , Fosfatidiletanolaminas , Tensoativos/síntese química , Água
3.
Chemphyschem ; 20(17): 2187-2194, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31393059

RESUMO

Cationic amphiphiles featuring two thioether functions in each lipid chain of bicatenar cationic amphiphiles are reported here for the first time. The physicochemical properties and transfection abilities of these new amphiphiles were compared with those of already reported analogues featuring either (i) saturated, (ii) unsaturated or (iii) mono-thioether containing lipid chains. The homogeneity of the series of new compounds allowed to clearly underscore the effect of bis-thioether containing lipid chains. This study shows that besides previous strategies based on unsaturation or ramification, the incorporation of two thioether functions per lipid chain constitutes an original complementary alternative to tune the supramolecular properties of amphiphilic compounds. The potential of this strategy was evaluated in the context of gene delivery and report that two cationic amphiphiles (i. e. 4 a and 4 b) can be proposed as new efficient transfection reagents.

4.
Org Biomol Chem ; 17(14): 3609-3616, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30912791

RESUMO

The hydrophobic moiety of cationic amphiphiles plays an important role in the transfection process because its structure has an impact on both the type of the supramolecular assembly and the dynamic properties of these assemblies. The latter have to exhibit a compromise between stability and instability to efficiently compact then deliver DNA into target cells. In the present work, we report the synthesis of new cationic amphiphiles featuring a thioether function at different positions of two 18-atom length lipid chains and we study their physicochemical properties (anisotropy of fluorescence and compression isotherms) with analogues possessing either oleyl (C18:1) or stearyl (C18:0) chains. We show that the fluidity of cationic lipids featuring a thioether function located close to the middle of each lipid chain is intermediate between that of oleyl- and stearyl-containing analogues. These properties are also supported by the compression isotherm assays. When used as carriers to deliver a plasmid DNA, thioether-containing cationic amphiphiles demonstrate a good ability to transfect human-derived cell lines, with those incorporating such a moiety in the middle of the chain being the most efficient. This work supports the use of a thioether function as a possible alternative to unsaturation in aliphatic lipid chains of cationic amphiphiles to modulate physicochemical behaviours and in turn biological activities such as gene delivery ability.


Assuntos
Técnicas de Transferência de Genes , Lipídeos/química , Sulfetos/química , Tensoativos/química , Cátions/química , Físico-Química , Humanos , Interações Hidrofóbicas e Hidrofílicas
5.
Hum Mol Genet ; 24(5): 1267-79, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25348330

RESUMO

In-frame exon deletions of the Duchenne muscular dystrophy (DMD) gene produce internally truncated proteins that typically lead to Becker muscular dystrophy (BMD), a milder allelic disorder of DMD. We hypothesized that differences in the structure of mutant dystrophin may be responsible for the clinical heterogeneity observed in Becker patients and we studied four prevalent in-frame exon deletions, i.e. Δ45-47, Δ45-48, Δ45-49 and Δ45-51. Molecular homology modelling revealed that the proteins corresponding to deletions Δ45-48 and Δ45-51 displayed a similar structure (hybrid repeat) than the wild-type dystrophin, whereas deletions Δ45-47 and Δ45-49 lead to proteins with an unrelated structure (fractional repeat). All four proteins in vitro expressed in a fragment encoding repeats 16-21 were folded in α-helices and remained highly stable. Refolding dynamics were slowed and molecular surface hydrophobicity were higher in fractional repeat containing Δ45-47 and Δ45-49 deletions compared with hybrid repeat containing Δ45-48 and Δ45-51 deletions. By retrospectively collecting data for a series of French BMD patients, we showed that the age of dilated cardiomyopathy (DCM) onset was delayed by 11 and 14 years in Δ45-48 and Δ45-49 compared with Δ45-47 patients, respectively. A clear trend toward earlier wheelchair dependency (minimum of 11 years) was also observed in Δ45-47 and Δ45-49 patients compared with Δ45-48 patients. Muscle dystrophin levels were moderately reduced in most patients without clear correlation with the deletion type. Disease progression in BMD patients appears to be dependent on the deletion itself and associated with a specific structure of dystrophin at the deletion site.


Assuntos
Distrofina/química , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Clonagem Molecular , Progressão da Doença , Éxons , Regulação da Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Pessoa de Meia-Idade , Modelos Moleculares , Distrofia Muscular de Duchenne/patologia , Estrutura Secundária de Proteína , Fases de Leitura , Estudos Retrospectivos , Deleção de Sequência , Adulto Jovem
6.
Biopolymers ; 107(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28944959

RESUMO

Increasing bacterial resistance towards antibiotics has stimulated research for novel antimicrobials. Proteins acting on bacterial membranes could be a solution. Lysozyme has been proven active against E. coli by disruption of both outer and cytoplasmic membranes, with dry-heating increasing lysozyme activity. Dry-heated lysozyme (DH-L) is a mixture of isoforms (isoaspartyl, native-like and succinimide lysozymes), giving rise to two questions: what effects does each form have, and which physicochemical properties are critical as regards the antibacterial activity? These issues were investigated by fractionating DH-L, analyzing structural properties of each fraction, and testing each fraction in vivo on bacteria and in vitro on membrane models. Positive net charge, hydrophobicity and molecular flexibility of the isoforms seem key parameters for their interaction with E. coli membranes. The succinimide lysozyme fraction, the most positive, flexible and hydrophobic, shows the highest antimicrobial activity, induces the strongest bacterial membrane disruption and is the most surface active on model lipid monolayers. Moreover, each fraction appears less efficient than DH-L against E. coli, indicating a synergetic cooperation between lysozyme isoforms. The bacterial membrane modifications induced by one isoform could facilitate the subsequent action of the other isoforms.


Assuntos
Anti-Infecciosos/metabolismo , Escherichia coli/metabolismo , Muramidase/metabolismo , Anti-Infecciosos/farmacologia , Varredura Diferencial de Calorimetria , Parede Celular/metabolismo , Dicroísmo Circular , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Isoenzimas/química , Isoenzimas/metabolismo , Isoenzimas/farmacologia , Muramidase/química , Muramidase/farmacologia , Espectrometria de Fluorescência , Succinimidas/química , Termodinâmica
7.
Biochemistry ; 55(29): 4018-26, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27367833

RESUMO

Dystrophin (DYS) is a membrane skeleton protein whose mutations lead to lethal Duchenne muscular dystrophy or to the milder Becker muscular dystrophy (BMD). One third of BMD "in-frame" exon deletions are located in the region that codes for spectrin-like repeats R16 to R21. We focused on four prevalent mutated proteins deleted in this area (called RΔ45-47, RΔ45-48, RΔ45-49, and RΔ45-51 according to the deleted exon numbers), analyzing protein/membrane interactions. Two of the mutants, RΔ45-48 and RΔ45-51, led to mild pathologies and displayed a similar triple coiled-coil structure as the full-length DYS R16-21, whereas the two others, RΔ45-47 and RΔ45-49, induced more severe pathologies and showed "fractional" structures unrelated to the normal one. To explore lipid packing, small unilamellar liposomes (SUVs) and planar monolayers were used at various initial surface pressures. The dissociation constants determined by microscale thermophoresis (MST) were much higher for the full-length DYS R161-21 than for the mutants; thus the wild type protein has weaker SUV binding. Comparing surface pressures after protein adsorption and analysis of atomic force microscopy images of mixed protein/lipid monolayers revealed that the mutants insert more into the lipid monolayer than the wild type does. In fact, in both models every deletion mutant showed more interactions with membranes than the full-length protein did. This means that mutations in the R16-21 part of dystrophin disturb the protein's molecular behavior as it relates to membranes, regardless of whether the accompanying pathology is mild or severe.


Assuntos
Distrofina/química , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Membrana Celular/química , Éxons , Humanos , Lipídeos de Membrana/química , Microscopia de Força Atômica , Modelos Moleculares , Mutação , Sequências Repetitivas de Aminoácidos , Deleção de Sequência , Espectrina/química , Espectrina/genética , Lipossomas Unilamelares/química
8.
Biochim Biophys Acta ; 1848(10 Pt A): 2308-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26087463

RESUMO

The biological membrane that surrounds the milk fat globules exhibits phase separation of polar lipids that is poorly known. The objective of this study was to investigate the role played by cholesterol in the organization of monolayers prepared as models of the milk fat globule membrane (MFGM). Differential scanning calorimetry and X-ray diffraction experiments allowed characterization of the gel to liquid crystalline phase transition temperature of lipids, Tm ~35°C, in vesicles prepared with a MFGM lipid extract. For temperature below Tm, atomic force microscopy revealed phase separation of lipids at 30 mN·m(-1) in Langmuir-Blodgett monolayers of the MFGM lipid extract. The high Tm lipids form liquid condensed (LC) domains that protrude by about 1.5 nm from the continuous liquid expanded (LE) phase. Cholesterol was added to the MFGM extract up to 30% of polar lipids (cholesterol/milk sphingomyelin (MSM) molar ratio of 50/50). Compression isotherms evidenced the condensing effect of the cholesterol onto the MFGM lipid monolayers. Topography of the monolayers showed a decrease in the area of the LC domains and in the height difference H between the LC domains and the continuous LE phase, as the cholesterol content increased in the MFGM lipid monolayers. These results were interpreted in terms of nucleation effects of cholesterol and decrease of the line tension between LC domains and LE phase in the MFGM lipid monolayers. This study revealed the major structural role of cholesterol in the MFGM that could be involved in biological functions of this interface (e.g. mechanisms of milk fat globule digestion).


Assuntos
Materiais Biomiméticos/química , Colesterol/química , Glicolipídeos/química , Glicoproteínas/química , Fluidez de Membrana , Microdomínios da Membrana/química , Lipossomas Unilamelares/química , Glicoproteínas/ultraestrutura , Gotículas Lipídicas , Microdomínios da Membrana/ultraestrutura , Transição de Fase
9.
Biochim Biophys Acta ; 1848(1 Pt A): 174-83, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450345

RESUMO

Lysozyme is mainly described active against Gram-positive bacteria, but is also efficient against some Gram-negative species. Especially, it was recently demonstrated that lysozyme disrupts Escherichia coli membranes. Moreover, dry-heating changes the physicochemical properties of the protein and increases the membrane activity of lysozyme. In order to elucidate the mode of insertion of lysozyme into the bacterial membrane, the interaction between lysozyme and a LPS monolayer mimicking the E. coli outer membrane has been investigated by tensiometry, ellipsometry, Brewster angle microscopy and atomic force microscopy. It was thus established that lysozyme has a high affinity for the LPS monolayer, and is able to insert into the latter as long as polysaccharide moieties are present, causing reorganization of the LPS monolayer. Dry-heating increases the lysozyme affinity for the LPS monolayer and its insertion capacity; the resulting reorganization of the LPS monolayer is different and more drastic than with the native protein.


Assuntos
Lipídeos de Membrana/química , Muramidase/química , Lipossomas Unilamelares/química , Algoritmos , Ligação Competitiva , Membrana Celular/química , Membrana Celular/metabolismo , Dessecação , Escherichia coli/química , Escherichia coli/metabolismo , Temperatura Alta , Modelos Lineares , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Lipídeos de Membrana/metabolismo , Microscopia , Microscopia de Força Atômica , Modelos Biológicos , Estrutura Molecular , Muramidase/metabolismo , Ligação Proteica , Termodinâmica , Lipossomas Unilamelares/metabolismo
10.
Biochim Biophys Acta ; 1848(4): 1065-73, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25615689

RESUMO

Antimicrobial resistance is currently an important public health issue. The need for innovative antimicrobials is therefore growing. The ideal antimicrobial compound should limit antimicrobial resistance. Antimicrobial peptides or proteins such as hen egg white lysozyme are promising molecules that act on bacterial membranes. Hen egg white lysozyme has recently been identified as active on Gram-negative bacteria due to disruption of the outer and cytoplasmic membrane integrity. Furthermore, dry-heating (7 days and 80 °C) improves the membrane activity of lysozyme, resulting in higher antimicrobial activity. These in vivo findings suggest interactions between lysozyme and membrane lipids. This is consistent with the findings of several other authors who have shown lysozyme interaction with bacterial phospholipids such as phosphatidylglycerol and cardiolipin. However, until now, the interaction between lysozyme and bacterial cytoplasmic phospholipids has been in need of clarification. This study proposes the use of monolayer models with a realistic bacterial phospholipid composition in physiological conditions. The lysozyme/phospholipid interactions have been studied by surface pressure measurements, ellipsometry and atomic force microscopy. Native lysozyme has proved able to absorb and insert into a bacterial phospholipid monolayer, resulting in lipid packing reorganization, which in turn has lead to lateral cohesion modifications between phospholipids. Dry-heating of lysozyme has increased insertion capacity and ability to induce lipid packing modifications. These in vitro findings are then consistent with the increased membrane disruption potential of dry heated lysozyme in vivo compared to native lysozyme. Moreover, an eggPC monolayer study suggested that lysozyme/phospholipid interactions are specific to bacterial cytoplasmic membranes.


Assuntos
Antibacterianos/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Temperatura Alta , Lipídeos de Membrana/metabolismo , Muramidase/metabolismo , Fosfolipídeos/metabolismo , Animais , Antibacterianos/química , Cinética , Lipídeos de Membrana/química , Microscopia de Força Atômica , Muramidase/química , Fosfolipídeos/química , Ligação Proteica , Propriedades de Superfície , Termodinâmica
11.
Biochim Biophys Acta ; 1838(5): 1266-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24440661

RESUMO

Dystrophin (DYS) is a filamentous protein that connects the cytoskeleton and the extracellular matrix via the sarcolemma, conferring resistance to muscular cells. In this study, interactions between the DYS R16-21 fragment and lipids were examined using Langmuir films made of anionic and zwitterionic lipids. The film fluidity was modified by the addition of 15% cholesterol. Whatever the lipid mixture examined, at low surface pressure (20 mN/m) few differences appeared on the protein insertion and the presence of cholesterol did not affect the protein/lipid interactions. At high surface pressure (30 mN/m), the protein insertion was very low and occurred only in zwitterionic films in the liquid-expanded phase. In anionic films, electrostatic interactions prevented the protein insertion outright, and caused accumulation of the protein on the hydrophilic part of the monolayer. Addition of cholesterol to both lipid mixtures drastically modified the protein-lipid interactions: the DYS R16-21 insertion increased and its organization in the monolayer appeared to be more homogeneous. The presence of accessible cholesterol recognition amino-acid consensus sequences in this fragment may enhance the protein/membrane binding at physiological lateral pressure. These results suggest that the anchorage of dystrophin to the membrane in vivo may be stabilized by cholesterol-rich nano-domains in the inner leaflet of sarcolemma.


Assuntos
Colesterol/metabolismo , Distrofina/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/química , Distrofina/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metabolismo dos Lipídeos , Proteínas de Membrana/química , Modelos Moleculares , Pressão , Ligação Proteica , Eletricidade Estática , Propriedades de Superfície
12.
FASEB J ; 28(7): 3114-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24692595

RESUMO

Mono- and digalactosyldiacylglycerol (MGDG and DGDG) are the most abundant lipids of photosynthetic membranes (thylakoids). In Arabidopsis green tissues, MGD1 is the main enzyme synthesizing MGDG. This monotopic enzyme is embedded in the inner envelope membrane of chloroplasts. DGDG synthesis occurs in the outer envelope membrane. Although the suborganellar localization of MGD1 has been determined, it is still not known how the lipid/glycolipid composition influences its binding to the membrane. The existence of a topological relationship between MGD1 and "embryonic" thylakoids is also unknown. To investigate MGD1 membrane binding, we used a Langmuir membrane model allowing the tuning of both lipid composition and packing. Surprisingly, MGD1 presents a high affinity to MGDG, its product, which maintains the enzyme bound to the membrane. This positive feedback is consistent with the low level of diacylglycerol, the substrate of MGD1, in chloroplast membranes. By contrast, MGD1 is excluded from membranes highly enriched in, or made of, pure DGDG. DGDG therefore exerts a retrocontrol, which is effective on the overall synthesis of galactolipids. Previously identified activators, phosphatidic acid and phosphatidylglycerol, also play a role on MGD1 membrane binding via electrostatic interactions, compensating the exclusion triggered by DGDG. The opposite effects of MGDG and DGDG suggest a role of these lipids on the localization of MGD1 in specific domains. Consistently, MGDG induces the self-organization of MGD1 into elongated and reticulated nanostructures scaffolding the chloroplast membrane.-Sarkis, J., Rocha, J., Maniti, O., Jouhet, J., Vié, V., Block, M. A., Breton, C., Maréchal, E., Girard-Egrot, A. The influence of lipids on MGD1 membrane binding highlights novel mechanisms for galactolipid biosynthesis regulation in chloroplasts.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Galactolipídeos/biossíntese , Galactosiltransferases/metabolismo , Membranas Intracelulares/metabolismo , Lipídeos de Membrana/metabolismo , Arabidopsis/metabolismo , Diglicerídeos/metabolismo , Galactolipídeos/metabolismo , Modelos Biológicos
13.
FASEB J ; 27(1): 359-67, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23033320

RESUMO

Dystrophin is an essential part of a membrane protein complex that provides flexible support to muscle fiber membranes. Loss of dystrophin function leads to membrane fragility and muscle-wasting disease. Given the importance of cytoskeletal interactions in strengthening the sarcolemma, we have focused on actin-binding domain 2 of human dystrophin, constituted by repeats 11 to 15 of the central domain (DYS R11-15). We previously showed that DYS R11-15 also interacts with membrane lipids. We investigated the shear elastic constant (µ) and the surface viscosity (η(s)) of Langmuir phospholipid monolayers mimicking the inner leaflet of the sarcolemma in the presence of DYS R11-15 and actin. The initial interaction of 100 nM DYS R11-15 with the monolayers slightly modifies their rheological properties. Injection of 0.125 µM filamentous actin leads to a strong increase of µ and η(s,) from 0 to 5.5 mN/m and 2.4 × 10(-4) N · s/m, respectively. These effects are specific to DYS R11-15, require filamentous actin, and depend on phospholipid nature and lateral surface pressure. These findings suggest that the central domain of dystrophin contributes significantly to the stiffness and the stability of the sarcolemma through its simultaneous interactions with the cytoskeleton and lipid membrane. This mechanical link is likely to be a major contributing factor to the shock absorber function of dystrophin and muscle sarcolemmal integrity on mechanical stress.


Assuntos
Actinas/metabolismo , Distrofina/metabolismo , Sarcolema/metabolismo , Actinas/química , Membrana Celular/metabolismo , Distrofina/química , Humanos , Reologia
14.
Langmuir ; 30(22): 6516-24, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24835749

RESUMO

Milk sphingomyelin (MSM) and cholesterol segregate into domains in the outer bilayer membrane surrounding milk fat globules. To elucidate the morphology and mechanical properties of theses domains, supported lipid bilayers with controlled molar proportions of MSM, dioleoylphosphatidylcholine (DOPC) and cholesterol were produced in buffer mimicking conditions of the milk aqueous phase. Atomic force microscopy imaging showed that (i) for T < 35 °C MSM segregated in gel phase domains protruding above the fluid phase, (ii) the addition of 20 mol % cholesterol resulted in smaller and more elongated l(o) phase domains than in equimolar MSM/DOPC membranes, (iii) the MSM/cholesterol-enriched l(o) phase domains were less salient than the MSM gel phase domains. Force spectroscopy measurements furthermore showed that cholesterol reduced the resistance of MSM/DOPC membrane to perforation. The results are discussed with respect to the effect of cholesterol on the biophysical properties of lipid membranes. The combination of AFM imaging and force mapping provides unprecedented insight into the structural and mechanical properties of milk lipid membranes, and opens perspectives for investigation of the functional properties of MSM domains during milk fat processing or digestion.


Assuntos
Biomimética/métodos , Colesterol/química , Membranas Artificiais , Esfingomielinas/química , Animais , Microscopia de Força Atômica , Fosfatidilcolinas/química
15.
Biochim Biophys Acta ; 1818(11): 2732-41, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22627110

RESUMO

Exchangeable apolipoproteins A-I and A-II play distinct roles in reverse cholesterol transport. ApoA-I interacts with phospholipids and cholesterol of the cell membrane to make high density lipoprotein particles whereas apolipoprotein A-II interacts with high density lipoprotein particles to release apolipoprotein A-I. The two proteins show a high activity at the aqueous solution/lipid interface and are characterized by a high content of amphipathic α-helices built upon repetition of the same structural motif. We set out to investigate to what extent the number of α-helix repeats of this structural motif modulates the affinity of the protein for lipids and the sensitivity to lipid packing. To this aim we have compared the insertion of apolipoproteins A-I and A-II in phospholipid monolayers formed on a Langmuir trough in conditions where lipid packing, surface pressure and charge were controlled. We also used atomic force microscopy to obtain high resolution topographic images of the surface at a resolution of several nanometers and performed statistical image analysis to calculate the spatial distribution and geometrical shape of apolipoproteins A-I and A-II clusters. Our data indicate that apolipoprotein A-I is sensitive to packing of zwitterionic lipids but insensitive to the packing of negatively charged lipids. Interestingly, apolipoprotein A-II proved to be insensitive to the packing of zwitterionic lipids. The different sensitivity to lipid packing provides clues as to why apolipoprotein A-II barely forms nascent high density lipoprotein particles while apolipoprotein A-I promotes their formation. We conclude that the different interfacial behaviors of apolipoprotein A-I and apolipoprotein A-II in lipidic monolayers are important determinants of their distinctive roles in lipid metabolism.


Assuntos
Apolipoproteína A-II/metabolismo , Apolipoproteína A-I/metabolismo , Fosfolipídeos/química , Apolipoproteína A-I/química , Apolipoproteína A-I/isolamento & purificação , Apolipoproteína A-II/química , Dicroísmo Circular , Microscopia de Força Atômica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
16.
Biochim Biophys Acta ; 1818(11): 2791-800, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22771765

RESUMO

Translocator protein TSPO is a membrane protein highly conserved in evolution which does not belong to any structural known family. TSPO is involved in physiological functions among which transport of molecules such as cholesterol to form steroids and bile salts in mammalian cells. Membrane protein structure determination remains a difficult task and needs concomitant approaches (for instance X-ray- or Electron-crystallography and NMR). Electron microscopy and two-dimensional crystallization under functionalized monolayers have been successfully developed for recombinant tagged proteins. The difficulty comes from the detergent carried by membrane proteins that disrupt the lipid monolayer. We identified the best conditions for injecting the histidine tagged recombinant TSPO in detergent in the subphase and to keep the protein stable. Reconstituted recombinant protein into a lipid bilayer favors its adsorption to functionalized monolayers and limits the disruption of the monolayer by reducing the amount of detergent. Finally, we obtained the first transmission electron microscopy images of recombinant mouse TSPO negatively stained bound to the lipid monolayer after injection into the subphase of pre-reconstituted TSPO in lipids. Image analysis reveals that circular objects could correspond to an association of at least four monomers of mouse TSPO. The different amino acid compositions and the location of the polyhistidine tag between bacterial and mouse TSPO could account for the formation of dimer versus tetramer, respectively. The difference in the loop between the first and second putative transmembrane domain may contribute to distinct monomer interaction, this is supported by differences in ligand binding parameters and biological functions of both proteins.


Assuntos
Lipídeos/química , Receptores de GABA/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Humanos , Camundongos , Dados de Sequência Molecular , Proteolipídeos/química , Homologia de Sequência de Aminoácidos
17.
Langmuir ; 29(25): 7931-8, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23721197

RESUMO

The kinetics of adsorption of solubilized spider major ampullate (MA) silk fibers at the air-water interface and the molecular structure and mechanical properties of the interfacial films formed have been studied using various physical techniques. The data show that Nephila clavipes MA proteins progressively adsorb at the interface and ultimately form a highly cohesive thin film. In situ infrared spectroscopy shows that as soon as they reach the interface the proteins predominantly form ß sheets. The protein secondary structure does not change significantly as the film grows, and the amount of ß sheet is the same as that of the natural fiber. This suggests that the final ß-sheet content is mainly dictated by the primary structure and not by the underlying formation process. The measure of the shear elastic constant at low strain reveals a very strong, viscous, cohesive assembly. The ß sheets seem to form cross-links dispersed within an intermolecular network, thus probably playing a major role in the film strength. More importantly, the molecular weight seems to be a crucial factor because interfacial films made from the natural proteins are ~7 times stronger and ~3 times more viscous than those obtained previously with shorter recombinant proteins. Brewster angle microscopy at the air-water interface and transmission electron microscopy of transferred films have revealed a homogeneous organization on the micrometer scale. The images suggest that the structural assembly at the air-water interface leads to the formation of macroscopically solid and highly cohesive networks. Overall, the results suggest that natural spider silk proteins, although sharing similarities with recombinant proteins, have the particular ability to self-assemble into ordered materials with exceptional mechanical properties.


Assuntos
Seda/química , Água/química , Ar , Animais , Cinética , Microscopia Eletrônica de Transmissão , Espectrofotometria Infravermelho , Aranhas
18.
Biochimie ; 215: 12-23, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37062468

RESUMO

Pancreatic lipase related-protein 2 (PLRP2) exhibits remarkable galactolipase and phospholipase A1 activities, which depend greatly on the supramolecular organization of the substrates and the presence of surfactant molecules such as bile salts. The objective of the study was to understand the modulation of the adsorption mechanisms and enzymatic activity of Guinea pig PLRP2 (gPLRP2), by the physical environment of the enzyme and the physical state of its substrate. Langmuir monolayers were used to reproduce homogeneous and heterogeneous photosynthetic model membranes containing galactolipids (GL), and/or phospholipids (PL), and/or phytosterols (pS), presenting uncharged or charged interfaces. The same lipid mixtures were also used to form micrometric liposomes, and their gPLRP2 catalyzed digestion kinetics were investigated in presence or in absence of bile salts (NaTDC) during static in vitro, so called "bulk", digestion. The enzymatic activity of gPLRP2 onto the galactolipid-based monolayers was characterized with an optimum activity at 15 mN/m, in the absence of bile salts. gPLRP2 showed enhanced adsorption onto biomimetic model monolayer containing negatively charged lipids. However, the compositional complexity in the heterogeneous uncharged model systems induced a lag phase before the initiation of lipolysis. In bulk, no enzymatic activity could be demonstrated on GL-based liposomes in the absence of bile salts, probably due to the high lateral pressure of the lipid bilayers. In the presence of NaTDC (4 mM), however, gPLRP2 showed both high galactolipase and moderate phospholipase A1 activities on liposomes, probably due to a decrease in packing and lateral pressure upon NaTDC adsorption, and subsequent disruption of liposomes.


Assuntos
Lipase , Lipossomos , Animais , Cobaias , Hidrólise , Fosfolipases A1 , Adsorção , Lipase/química , Fosfolipídeos/metabolismo , Galactolipídeos , Ácidos e Sais Biliares
19.
J Biol Chem ; 286(35): 30481-30491, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21712383

RESUMO

Dystrophin is essential to skeletal muscle function and confers resistance to the sarcolemma by interacting with cytoskeleton and membrane. In the present work, we characterized the behavior of dystrophin 11-15 (DYS R11-15), five spectrin-like repeats from the central domain of human dystrophin, with lipids. DYS R11-15 displays an amphiphilic character at the liquid/air interface while maintaining its secondary α-helical structure. The interaction of DYS R11-15 with small unilamellar vesicles (SUVs) depends on the lipid nature, which is not the case with large unilamellar vesicles (LUVs). In addition, switching from anionic SUVs to anionic LUVs suggests the lipid packing as a crucial factor for the interaction of protein and lipid. The monolayer model and the modulation of surface pressure aim to mimic the muscle at work (i.e. dynamic changes of muscle membrane during contraction and relaxation) (high and low surface pressure). Strikingly, the lateral pressure modifies the protein organization. Increasing the lateral pressure leads the proteins to be organized in a regular network. Nevertheless, a different protein conformation after its binding to monolayer is revealed by trypsin proteolysis. Label-free quantification by nano-LC/MS/MS allowed identification of the helices in repeats 12 and 13 involved in the interaction with anionic SUVs. These results, combined with our previous studies, indicate that DYS R11-15 constitutes the only part of dystrophin that interacts with anionic as well as zwitterionic lipids and adapts its interaction and organization depending on lipid packing and lipid nature. We provide strong experimental evidence for a physiological role of the central domain of dystrophin in sarcolemma scaffolding through modulation of lipid-protein interactions.


Assuntos
Distrofina/fisiologia , Lipídeos/química , Espectrina/química , Distrofina/química , Regulação da Expressão Gênica , Humanos , Lipossomos/química , Microscopia de Força Atômica/métodos , Modelos Moleculares , Conformação Molecular , Fosfolipídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Propriedades de Superfície , Tripsina/química
20.
Biochim Biophys Acta ; 1808(1): 106-16, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20833125

RESUMO

The K4 peptide (KKKKPLFGLFFGLF) was recently demonstrated to display good antimicrobial activities against various bacterial strains and thus represents a candidate for the treatment of multiple-drug resistant infections. In this study, we use various techniques to study K4 behaviour in different media: water, solutions of detergent micelles, phospholipid monolayers and suspension of phospholipid vesicles. First, self-assembly of the peptide in water is observed, leading to the formation of spherical objects around 10nm in diameter. The addition of micelles induces partial peptide folding to an extent depending on the charge of the detergent headgroups. The NMR structure of the peptide in the presence of SDS displays a helical character of the hydrophobic moiety, whereas only partial folding is observed in DPC micelles. This peptide is able to destabilize the organization of monolayer membranes or bilayer liposomes composed of anionic lipids. When added on small unilamellar vesicles it generates larger objects attributed to mixed lipid-peptide vesicles and aggregated vesicles. The absence of calcein leakage from liposomes, when adding K4, underlines the original mechanism of this linear amphipathic peptide. Our results emphasize the importance of the electrostatic effect for K4 folding and lipid destabilization leading to the microorganisms' death with a high selectivity for the eukaryotic cells at the MIC. Interestingly, the micrographs obtained by electronic microscopy after addition of peptide on bacteria are also consistent with the formation of mixed lipid-peptide objects. Overall, this work supports a detergent-like mechanism for the antimicrobial activity of this peptide.


Assuntos
Anti-Infecciosos/química , Detergentes/química , Peptídeos/química , Dicroísmo Circular , Fluoresceínas/química , Concentração de Íons de Hidrogênio , Lipídeos/química , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Transmissão/métodos , Modelos Moleculares , Conformação Molecular , Conformação Proteica , Prótons , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA