Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 176: 105964, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526090

RESUMO

Lafora disease (LD; OMIM#254780) is a rare form of progressive myoclonus epilepsy (prevalence <1:1,000,000) characterized by the accumulation of insoluble deposits of aberrant glycogen (polyglucosans), named Lafora bodies, in the brain but also in peripheral tissues. LD is the most severe form of the group of progressive myoclonus epilepsies, since patients present a rapid deterioration and dementia with amplification of seizures, leading to death after a decade from the onset of the first symptoms. We have recently described that reactive glia-derived neuroinflammation should be considered a novel hallmark of LD since we observed a florid upregulation of differentially expressed genes in both LD mouse lines, which were mainly related to mediators of inflammatory response. In this work, we define an upregulation of the expression of mediators of the TNF and IL6/JAK2 signaling pathways in LD. In addition, we describe the activation of the non-canonical form of the inflammasome. Furthermore, we describe the infiltration of peripheral immune cells in the brain parenchyma, which could aggravate glia-derived neuroinflammation. Finally, we describe CXCL10 and S100b as blood biomarkers of the disease, which will allow the study of the progression of the disease using serum blood samples. We consider that the identification of these initial inflammatory changes in LD will be very important to implement possible anti-inflammatory therapeutic strategies to prevent the development of the disease.


Assuntos
Doença de Lafora , Epilepsias Mioclônicas Progressivas , Animais , Camundongos , Interleucina-6 , Doença de Lafora/genética , Neuroglia/metabolismo , Doenças Neuroinflamatórias , Proteínas Tirosina Fosfatases não Receptoras/genética , Transdução de Sinais , Fatores de Necrose Tumoral/metabolismo
2.
Glia ; 69(5): 1170-1183, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33368637

RESUMO

Lafora disease (LD) is a fatal rare type of progressive myoclonus epilepsy that appears during early adolescence. The disease is caused by mutations in EPM2A or EPM2B genes, which encode laforin, a glucan phosphatase, and malin, an E3-ubiquitin ligase, respectively. Although the exact roles of laforin and malin are still not well understood, it is known that they work as a complex in which laforin recruits targets that will be ubiquitinated by malin. Recently, we suggested that the type of epilepsy that accompanies LD could be due to deficiencies in the function of the astrocytic glutamate transporter GLT-1. We described that astrocytes from LD mouse models presented decreased levels of GLT-1 at the plasma membrane, leading to increased levels of glutamate in the brain parenchyma. In this work, we present evidence indicating that in the absence of a functional laforin/malin complex (as in LD cellular models) there is an alteration in the ubiquitination of GLT-1, which could be the cause of the reduction in the levels of GLT-1 at the plasma membrane. On the contrary, overexpression of the laforin/malin complex promotes the retention of GLT-1 at the plasma membrane. This retention may be due to the direct ubiquitination of GLT-1 and/or to an opposite effect of this complex on the dynamics of the Nedd4.2-mediated endocytosis of the transporter. This work, therefore, presents new pieces of evidence on the regulation of GLT-1 by the laforin/malin complex, highlighting its value as a therapeutic target for the amelioration of the type of epilepsy that accompanies LD.


Assuntos
Doença de Lafora , Sistema X-AG de Transporte de Aminoácidos , Animais , Endocitose , Doença de Lafora/genética , Camundongos , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Ubiquitinação
3.
J Med Virol ; 93(11): 6132-6139, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34050944

RESUMO

Cholesteatomas are frequent middle ear benign tumors of unknown etiology. Infectious agents have been considered as possible contributing factors in the pathogenesis of cholesteatomas. Aiming to investigate the presence of respiratory viruses in primary cholesteatoma tissues, 26 formalin-fixed paraffin-embedded primary cholesteatoma tissues obtained from patients seen at the of the Clinical Hospital of the University of São Paulo School of Medicine, in Ribeirão Preto, Brazil were tested by real-time polymerase chain reaction (PCR). Considering the PCR results, 35% of the tissues were positive for human rhinovirus (HRV), 15.3% for human enterovirus (EV), 3.8% for human metapneumovirus (HMPV), and 3.8% for human bocavirus (HBoV). Serial immunohistochemistry for virus antigens and cell surface markers evidenced that the viruses were associated with fibroblasts, dendritic cells, macrophages, B lymphocytes, CD4+ , and CD8+ T lymphocytes. These findings indicate for the first time the presence of active respiratory virus infection in primary cholesteatoma tissues, suggesting that persisting virus infection in the middle could play a role in the pathogenesis and evolution of cholesteatomas.


Assuntos
Colesteatoma/virologia , Enterovirus/isolamento & purificação , Bocavirus Humano/isolamento & purificação , Metapneumovirus/isolamento & purificação , Rhinovirus/isolamento & purificação , Adolescente , Adulto , Idoso , Brasil , Colesteatoma/patologia , Estudos Transversais , Enterovirus/genética , Feminino , Bocavirus Humano/genética , Humanos , Masculino , Metapneumovirus/genética , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Rhinovirus/genética , Adulto Jovem
4.
Hum Mol Genet ; 27(7): 1290-1300, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29408991

RESUMO

Lafora disease (LD) is a fatal form of progressive myoclonus epilepsy characterized by the accumulation of insoluble poorly branched glycogen-like inclusions named Lafora bodies (LBs) in the brain and peripheral tissues. In the brain, since its first discovery in 1911, it was assumed that these glycogen inclusions were only present in affected neurons. Mouse models of LD have been obtained recently, and we and others have been able to report the accumulation of glycogen inclusions in the brain of LD animals, what recapitulates the hallmark of the disease. In this work we present evidence indicating that, although in mouse models of LD glycogen inclusions co-localize with neurons, as originally established, most of them co-localize with astrocytic markers such as glial fibrillary acidic protein (GFAP) and glutamine synthase. In addition, we have observed that primary cultures of astrocytes from LD mouse models accumulate higher levels of glycogen than controls. These results suggest that astrocytes may play a crucial role in the pathophysiology of Lafora disease, as the accumulation of glycogen inclusions in these cells may affect their regular functionality leading them to a possible neuronal dysfunction.


Assuntos
Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glicogênio/metabolismo , Doença de Lafora/metabolismo , Animais , Astrócitos/patologia , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/genética , Glutamato-Amônia Ligase/genética , Glicogênio/genética , Humanos , Doença de Lafora/genética , Doença de Lafora/patologia , Camundongos , Camundongos Knockout
5.
Biochim Biophys Acta ; 1862(6): 1074-83, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26976331

RESUMO

Lafora disease (LD, OMIM 254780) is a fatal rare disorder characterized by epilepsy and neurodegeneration. Although in recent years a lot of information has been gained on the molecular basis of the neurodegeneration that accompanies LD, the molecular basis of epilepsy is poorly understood. Here, we present evidence indicating that the homeostasis of glutamate transporter GLT-1 (EAAT2) is compromised in mouse models of LD. Our results indicate that primary astrocytes from LD mice have reduced capacity of glutamate transport, probably because they present a reduction in the levels of the glutamate transporter at the plasma membrane. On the other hand, the overexpression in cellular models of laforin and malin, the two proteins related to LD, results in an accumulation of GLT-1 (EAAT2) at the plasma membrane and in a severe reduction of the ubiquitination of the transporter. All these results suggest that the laforin/malin complex slows down the endocytic recycling of the GLT-1 (EAAT2) transporter. Since, defects in the function of this transporter lead to excitotoxicity and epilepsy, we suggest that the epilepsy that accompanies LD could be due, at least in part, to deficiencies in the function of the GLT-1 (EAAT2) transporter.


Assuntos
Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Doença de Lafora/metabolismo , Animais , Astrócitos/patologia , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Fosfatases de Especificidade Dupla/análise , Fosfatases de Especificidade Dupla/metabolismo , Endocitose , Transportador 2 de Aminoácido Excitatório/análise , Homeostase , Humanos , Doença de Lafora/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Tirosina Fosfatases não Receptoras , Ubiquitinação
6.
BMC Biochem ; 16: 24, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26493215

RESUMO

BACKGROUND: Lafora disease (LD, OMIM 254780) is a fatal neurodegenerative disorder produced mainly by mutations in two genes: EPM2A, encoding the dual specificity phosphatase laforin, and EPM2B, encoding the E3-ubiquitin ligase malin. Although it is known that laforin and malin may form a functional complex, the underlying molecular mechanisms of this pathology are still far from being understood. METHODS: In order to gain information about the substrates of the laforin/malin complex, we have carried out a yeast substrate-trapping screening, originally designed to identify substrates of protein tyrosine phosphatases. RESULTS: Our results identify the two muscular isoforms of pyruvate kinase (PKM1 and PKM2) as novel interaction partners of laforin. CONCLUSIONS: We present evidence indicating that the laforin/malin complex is able to interact with and ubiquitinate both PKM1 and PKM2. This post-translational modification, although it does not affect the catalytic activity of PKM1, it impairs the nuclear localization of PKM2.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Hormônios Tireóideos/metabolismo , Ubiquitinação , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Ubiquitina-Proteína Ligases , Proteínas de Ligação a Hormônio da Tireoide
7.
Blood Press Monit ; 29(2): 71-81, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300019

RESUMO

Different lifestyle changes have been employed to improve clinical hypertension. However, there is scarce evidence on the blood pressure responsiveness to resistance training (RT) in hypertensive older adults. Consequently, little is known about some participants clinically reducing blood pressure and others not. Thus, we investigate the effects and responsiveness of RT on blood pressure in hypertensive older adults. We secondarily evaluated the biochemical risk factors for cardiovascular disease and functional performance. Older participants with hypertension were randomly assigned into RT (n = 27) and control group (n = 25). Blood pressure, functional performance (timed up and go, handgrip strength, biceps curl and sit-to-stand), fasting glucose, and lipid profiles were evaluated preintervention and postintervention. The statistic was performed in a single-blind manner, the statistician did not know who was the control and RT. RT was effective in reducing systolic blood pressure (SBP) (pre 135.7 ±â€…14.7; post 124.7 ±â€…11.0; P  < 0.001) and the responses to RT stimuli varied noticeably between hypertensive older adults after 12 weeks. For example, 13 and 1 responders displayed a minimal clinical important difference for SBP attenuation (10.9 mmHg) in the RT and control groups, respectively. RT improved the functional performance of older people with hypertension, while no differences were found in biochemical parameters (triglycerides, HDL, LDL, fasting glucose) after 12 weeks. In conclusion, responses to RT stimuli varied noticeably between hypertensive individuals and RT was effective in reducing SBP.


Assuntos
Hipertensão , Treinamento Resistido , Humanos , Idoso , Pressão Sanguínea/fisiologia , Força da Mão , Método Simples-Cego , Hipertensão/terapia , Glucose
8.
Front Microbiol ; 14: 1152249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077240

RESUMO

Virus infection involves the manipulation of key host cell functions by specialized virulence proteins. The Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) small accessory proteins ORF3a and ORF7a have been implicated in favoring virus replication and spreading by inhibiting the autophagic flux within the host cell. Here, we apply yeast models to gain insights into the physiological functions of both SARS-CoV-2 small open reading frames (ORFs). ORF3a and ORF7a can be stably overexpressed in yeast cells, producing a decrease in cellular fitness. Both proteins show a distinguishable intracellular localization. ORF3a localizes to the vacuolar membrane, whereas ORF7a targets the endoplasmic reticulum. Overexpression of ORF3a and ORF7a leads to the accumulation of Atg8 specific autophagosomes. However, the underlying mechanism is different for each viral protein as assessed by the quantification of the autophagic degradation of Atg8-GFP fusion proteins, which is inhibited by ORF3a and stimulated by ORF7a. Overexpression of both SARS-CoV-2 ORFs decreases cellular fitness upon starvation conditions, where autophagic processes become essential. These data confirm previous findings on SARS-CoV-2 ORF3a and ORF7a manipulating autophagic flux in mammalian cell models and are in agreement with a model where both small ORFs have synergistic functions in stimulating intracellular autophagosome accumulation, ORF3a by inhibiting autophagosome processing at the vacuole and ORF7a by promoting autophagosome formation at the ER. ORF3a has an additional function in Ca2+ homeostasis. The overexpression of ORF3a confers calcineurin-dependent Ca2+ tolerance and activates a Ca2+ sensitive FKS2-luciferase reporter, suggesting a possible ORF3a-mediated Ca2+ efflux from the vacuole. Taken together, we show that viral accessory proteins can be functionally investigated in yeast cells and that SARS-CoV-2 ORF3a and ORF7a proteins interfere with autophagosome formation and processing as well as with Ca2+ homeostasis from distinct cellular targets.

9.
Transl Res ; 255: 109-118, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36526155

RESUMO

Vertical transmission of Chikungunya virus (CHIKV) has been reported in humans, but the transmission routes have not been completely understood, and experimental animal models are needed to enable detailed investigation of the transmission and pathogenesis of congenital infections. The intertwining of immune response and virus components at the gestation/breastfeeding interfaces between mother and fetus/newborn may have effects during the offspring development. An experimental model of CHIKV was established by infecting pregnant BALB/c female mice that enabled confirmation that dams inoculated up to the 10th gestational day transmit CHIKV transplacentally to approximately 8.4% of the fetuses, resulting in severe teratogenic effects. CHIKV neutralizing antibodies were detected in sera from adult mice born to healthy females and breastfed by CHIKV-infected dams, while no neutralization was detected in sera from animals born to CHIKV-infected dams. Moreover, adult mice born to healthy dams and cross-fostered for breastfeeding by CHIKV-infected dams were resistant to challenge with CHIKV on the 90th day after birth. The animals also had reduced viral loads in brain and spleen as compared to controls. There was expression of fluorescent CHIKV non-structural protein, and detection of viral RNA by RT-PCR in breast tissue from infected dams. CHIKV RNA and proteins were also detected in breast milk retrieved from the stomachs of recently fed newborns. The experimental results were also complemented by the finding of CHIKV RNA in 6% of colostrum samples from healthy lactating women in a CHIKV-endemic area. Breastfeeding induces immune protection to challenge with CHIKV in mice.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Gravidez , Feminino , Animais , Camundongos , Vírus Chikungunya/genética , Aleitamento Materno , Lactação , Anticorpos Antivirais , Camundongos Endogâmicos BALB C , RNA
10.
Nat Commun ; 13(1): 5722, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175400

RESUMO

Visceral adiposity is a risk factor for severe COVID-19, and a link between adipose tissue infection and disease progression has been proposed. Here we demonstrate that SARS-CoV-2 infects human adipose tissue and undergoes productive infection in fat cells. However, susceptibility to infection and the cellular response depends on the anatomical origin of the cells and the viral lineage. Visceral fat cells express more ACE2 and are more susceptible to SARS-CoV-2 infection than their subcutaneous counterparts. SARS-CoV-2 infection leads to inhibition of lipolysis in subcutaneous fat cells, while in visceral fat cells, it results in higher expression of pro-inflammatory cytokines. Viral load and cellular response are attenuated when visceral fat cells are infected with the SARS-CoV-2 gamma variant. A similar degree of cell death occurs 4-days after SARS-CoV-2 infection, regardless of the cell origin or viral lineage. Hence, SARS-CoV-2 infects human fat cells, replicating and altering cell function and viability in a depot- and viral lineage-dependent fashion.


Assuntos
COVID-19 , SARS-CoV-2 , Tecido Adiposo , Enzima de Conversão de Angiotensina 2 , Citocinas , Humanos
11.
FASEB J ; 24(8): 2998-3009, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20228253

RESUMO

A large body of evidence supports the hypothesis that proteasomal degradation of the growth suppressor p27(Kip1) (p27) facilitates mammalian cell cycle progression. However, very few studies have addressed the possibility of proteasome-independent mechanisms of p27 proteolysis. Here we provide evidence for a novel pathway of p27 degradation via the lysosome that is mediated by its interaction with the endosomal protein sorting nexin 6 (SNX6), a member of the sorting nexin family of vesicular trafficking regulators. p27 and SNX6 interact in vitro and in vivo in mammalian cells, partially colocalize in endosomes, and are present in purified endosomal fractions. Gain- and loss-of-function studies revealed that SNX6 induces endosomal accumulation of p27. Moreover, p27 is detected in lysosomes and inhibition of lysosome-dependent proteolysis impairs serum-mediated down-regulation of p27 in a SNX6-dependent manner. To validate the localization of p27 in these organelles, we analyzed several cell lines using two different anti-p27 antibodies, several organelle-specific markers [e.g., early endosome antigen 1, lysosomal-associated membrane protein (LAMP) 1, LAMP2, and LysoTracker], and overexpression of fluorescent p27 and SNX6. Remarkably, silencing of SNX6 attenuates p27 down-regulation in the G(1) phase of the mitotic cell cycle and delays cell cycle progression. We therefore conclude that, in addition to the proteasome-dependent pathway, SNX6-mediated endolysosomal degradation of p27 also contributes to cell cycle progression in mammalian cells.


Assuntos
Proteínas de Transporte/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Lisossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Proteínas de Transporte/análise , Ciclo Celular , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p27/análise , Humanos , Camundongos , Ligação Proteica , Nexinas de Classificação , Proteínas de Transporte Vesicular/análise
12.
Biotechnol Lett ; 33(6): 1169-75, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21302132

RESUMO

The efficacy of recombinant Lactococcus lactis as a delivery vehicle for a rotavirus antigen was evaluated in a mouse model. The rotavirus VP8* protein was expressed intracellularly and extracellularly in L. lactis wild type and in an alr mutant deficient in alanine racemase activity, necessary for the synthesis of the cell-wall component D: -alanine. When the mucosal immune response was evaluated by measuring VP8*-specific IgA antibody in faeces, wild-type L. lactis triggered a low IgA synthesis only when the secreting strain was used. In contrast, VP8*-specific IgA was detected in faeces of both groups of mice orally given the alr mutant expressing extracellular VP8* and intracellular VP8*, which reached levels similar to that obtained with the wild type secreting strain. However, oral administration of the recombinant strains did not induce serum IgG or IgA responses. L. lactis cell-wall mutants may therefore provide certain advantages when low-antigenic proteins are expressed intracellularly. However, the low immune response obtained by using this antigen-bacterial host combination prompts to the use of new strains and vaccination protocols in order to develop acceptable rotavirus immunization levels.


Assuntos
Lactococcus lactis/genética , Lactococcus lactis/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Vacinas contra Rotavirus/administração & dosagem , Rotavirus/genética , Rotavirus/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Administração Oral , Alanina Racemase/genética , Alanina Racemase/metabolismo , Animais , Anticorpos Antivirais/biossíntese , Antígenos Virais/administração & dosagem , Antígenos Virais/genética , Sequência de Bases , Biotecnologia , Feminino , Vetores Genéticos , Imunidade nas Mucosas , Imunoglobulina A/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Plasmídeos/genética , Proteínas de Ligação a RNA/administração & dosagem , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/genética , Vacinas contra Rotavirus/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas não Estruturais Virais/administração & dosagem
13.
mBio ; 12(4): e0046321, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34340542

RESUMO

Oropouche virus (OROV) infection of humans is associated with a debilitating febrile illness that can progress to meningitis or encephalitis. First isolated from a forest worker in Trinidad and Tobago in 1955, the arbovirus OROV has since been detected throughout the Amazon basin with an estimated 500,000 human infections over 60 years. Like other members of the family Peribunyaviridae, the viral genome exists as 3 single-stranded negative-sense RNA segments. The medium-sized segment encodes a viral glycoprotein complex (GPC) that is proteolytically processed into two viral envelope proteins, Gn and Gc, responsible for attachment and membrane fusion. There are no therapeutics or vaccines to combat OROV infection, and we have little understanding of protective immunity to infection. Here, we generated a replication competent chimeric vesicular stomatitis virus (VSV), in which the endogenous glycoprotein was replaced by the GPC of OROV. Serum from mice immunized by intramuscular injection with VSV-OROV specifically neutralized wild-type OROV, and using peptide arrays we mapped multiple epitopes within an N-terminal variable region of Gc recognized by the immune sera. VSV-OROV lacking this variable region of Gc was also immunogenic in mice producing neutralizing sera that recognize additional regions of Gc. Challenge of both sets of immunized mice with wild-type OROV shows that the VSV-OROV chimeras reduce wild-type viral infection and suggest that antibodies that recognize the variable N terminus of Gc afford less protection than those that target more conserved regions of Gc. IMPORTANCE Oropouche virus (OROV), an orthobunyavirus found in Central and South America, is an emerging public health challenge that causes debilitating febrile illness. OROV is transmitted by arthropods, and increasing mobilization has the potential to significantly increase the spread of OROV globally. Despite this, no therapeutics or vaccines have been developed to combat infection. Using vesicular stomatitis (VSV) as a backbone, we developed a chimeric virus bearing the OROV glycoproteins (VSV-OROV) and tested its ability to elicit a neutralizing antibody response. Our results demonstrate that VSV-OROV produces a strong neutralizing antibody response that is at least partially targeted to the N-terminal region of Gc. Importantly, vaccination with VSV-OROV reduces viral loads in mice challenged with wild-type virus. These data provide novel evidence that targeting the OROV glycoproteins may be an effective vaccination strategy to combat OROV infection.


Assuntos
Infecções por Bunyaviridae/prevenção & controle , Genoma Viral , Orthobunyavirus/genética , Vesiculovirus/genética , Vesiculovirus/imunologia , Proteínas do Envelope Viral/genética , Animais , Anticorpos Neutralizantes , Infecções por Bunyaviridae/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estomatite Vesicular/virologia , Replicação Viral
14.
Viruses ; 13(2)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540662

RESUMO

Human respiratory syncytial virus (HRSV) is the most frequent cause of severe respiratory disease in children. The main targets of HRSV infection are epithelial cells of the respiratory tract, and the great majority of the studies regarding HRSV infection are done in respiratory cells. Recently, the interest on respiratory virus infection of lymphoid cells has been growing, but details of the interaction of HRSV with lymphoid cells remain unknown. Therefore, this study was done to assess the relationship of HRSV with A3.01 cells, a human CD4+ T cell line. Using flow cytometry and fluorescent focus assay, we found that A3.01 cells are susceptible but virtually not permissive to HRSV infection. Dequenching experiments revealed that the fusion process of HRSV in A3.01 cells was nearly abolished in comparison to HEp-2 cells, an epithelial cell lineage. Quantification of viral RNA by RT-qPCR showed that the replication of HRSV in A3.01 cells was considerably reduced. Western blot and quantitative flow cytometry analyses demonstrated that the production of HRSV proteins in A3.01 was significantly lower than in HEp-2 cells. Additionally, using fluorescence in situ hybridization, we found that the inclusion body-associated granules (IBAGs) were almost absent in HRSV inclusion bodies in A3.01 cells. We also assessed the intracellular trafficking of HRSV proteins and found that HRSV proteins colocalized partially with the secretory pathway in A3.01 cells, but these HRSV proteins and viral filaments were present only scarcely at the plasma membrane. HRSV infection of A3.01 CD4+ T cells is virtually unproductive as compared to HEp-2 cells, as a result of defects at several steps of the viral cycle: Fusion, genome replication, formation of inclusion bodies, recruitment of cellular proteins, virus assembly, and budding.


Assuntos
Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Linfócitos T/virologia , Linhagem Celular , Humanos , Vírus Sincicial Respiratório Humano/genética , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Montagem de Vírus , Replicação Viral
15.
iScience ; 24(11): 103276, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34755096

RESUMO

Lafora disease (LD) is a fatal childhood dementia characterized by progressive myoclonic epilepsy manifesting in the teenage years, rapid neurological decline, and death typically within ten years of onset. Mutations in either EPM2A, encoding the glycogen phosphatase laforin, or EPM2B, encoding the E3 ligase malin, cause LD. Whole exome sequencing has revealed many EPM2A variants associated with late-onset or slower disease progression. We established an empirical pipeline for characterizing the functional consequences of laforin missense mutations in vitro using complementary biochemical approaches. Analysis of 26 mutations revealed distinct functional classes associated with different outcomes that were supported by clinical cases. For example, F321C and G279C mutations have attenuated functional defects and are associated with slow progression. This pipeline enabled rapid characterization and classification of newly identified EPM2A mutations, providing clinicians and researchers genetic information to guide treatment of LD patients.

16.
Biochim Biophys Acta Mol Cell Res ; 1867(2): 118613, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31758957

RESUMO

Lafora progressive myoclonus epilepsy is a fatal rare neurodegenerative disorder characterized by the accumulation of insoluble abnormal glycogen deposits in the brain and peripheral tissues. Mutations in at least two genes are responsible for the disease: EPM2A, encoding the glucan phosphatase laforin, and EPM2B, encoding the RING-type E3-ubiquitin ligase malin. Both laforin and malin form a functional complex in which laforin recruits the substrates to be ubiquitinated by malin. We and others have described that, in cellular and animal models of this disease, there is an autophagy impairment which leads to the accumulation of dysfunctional mitochondria. In addition, we established that the autophagic defect occurred at the initial steps of autophagosome formation. In this work, we present evidence that in cellular models of the disease there is a decrease in the amount of phosphatidylinositol-3P. This is probably due to defective regulation of the autophagic PI3KC3 complex, in the absence of a functional laforin/malin complex. In fact, we demonstrate that the laforin/malin complex interacts physically and co-localizes intracellularly with core components of the PI3KC3 complex (Beclin1, Vps34 and Vps15), and that this interaction is specific and results in the polyubiquitination of these proteins. In addition, the laforin/malin complex is also able to polyubiquitinate ATG14L and UVRAG. Finally, we show that overexpression of the laforin/malin complex increases PI3KC3 activity. All these results suggest a new role of the laforin/malin complex in the activation of autophagy via regulation of the PI3KC3 complex and explain the defect in autophagy described in Lafora disease.


Assuntos
Doença de Lafora/patologia , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Proteína Beclina-1/química , Proteína Beclina-1/metabolismo , Células Cultivadas , Humanos , Doença de Lafora/metabolismo , Microscopia de Fluorescência , Ligação Proteica , Proteínas Tirosina Fosfatases não Receptoras/química , Proteínas Tirosina Fosfatases não Receptoras/genética , Fatores de Transcrição/química , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
17.
Biochem Biophys Res Commun ; 369(3): 964-8, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18328803

RESUMO

In this work, we have examined the possible role of AMP-activated protein kinase (a key energy sensor) in regulating intracellular protein degradation. We have found that AICAR, a known activator of AMPK, has a dual effect. On one hand, it inhibits autophagy by a mechanism independent of AMPK activity; AICAR decreases class III PI3-kinase binding to beclin-1 and this effect counteracts and reverses the known positive effect of AMPK activity on autophagy. On the other hand, AICAR inhibits the proteasomal degradation of proteins by an AMPK-dependent mechanism. This is a novel function of AMPK that allows the regulation of proteasomal activity under conditions of energy demand.


Assuntos
Autofagia , Complexos Multienzimáticos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Proteína Beclina-1 , Células Cultivadas , Regulação para Baixo , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteassoma , Ribonucleosídeos/farmacologia , Vacúolos/efeitos dos fármacos , Vacúolos/enzimologia
18.
Methods Mol Biol ; 1732: 143-157, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29480473

RESUMO

Mammalian AMP-activated protein kinase (AMPK) is a Ser/Thr protein kinase that acts as a crucial energy sensor in the cell. Since AMPK plays a key role in a multitude of different pathways in the cell, major efforts have been concentrated to elucidate its signaling network, mainly by the identification of AMPK downstream targets. In this chapter we describe a yeast two-hybrid method for the direct evaluation of the interaction between an AMPK subunit and putative substrates.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Mapeamento de Interação de Proteínas/métodos , Subunidades Proteicas/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Fosforilação , Saccharomyces cerevisiae/metabolismo
19.
Epilepsy Res ; 145: 169-177, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30041081

RESUMO

Lafora disease (LD, OMIM 254780) is a rare disorder characterized by epilepsy and neurodegeneration leading patients to a vegetative state and death, usually within the first decade from the onset of the first symptoms. In the vast majority of cases LD is related to mutations in either the EPM2A gene (encoding the glucan phosphatase laforin) or the EPM2B gene (encoding the E3-ubiquitin ligase malin). In this work, we characterize the mutations present in the EPM2A gene in a patient displaying a slow progression form of the disease. The patient is compound heterozygous with Y112X and N163D mutations in the corresponding alleles. In primary fibroblasts obtained from the patient, we analyzed the expression of the mutated alleles by quantitative real time PCR and found slightly lower levels of expression of the EPM2A gene respect to control cells. However, by Western blotting we were unable to detect endogenous levels of the protein in crude extracts from patient fibroblasts. The Y112X mutation would render a truncated protein lacking the phosphatase domain and likely degraded. Since minute amounts of laforin-N163D might still play a role in cell physiology, we analyzed the biochemical characteristics of the N163D mutation. We found that recombinant laforin N163D protein was as stable as wild type and exhibited near wild type phosphatase activity towards biologically relevant substrates. On the contrary, it showed a severe impairment in the interaction profile with previously identified laforin binding partners. These results lead us to conclude that the slow progression of the disease present in this patient could be either due to the specific biochemical properties of laforin N163D or to the presence of alternative genetic modifying factors separate from pathogenicity.


Assuntos
Doença de Lafora/genética , Mutação/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Adulto , Progressão da Doença , Feminino , Expressão Gênica , Células HEK293 , Humanos , Imunoprecipitação , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Monoéster Fosfórico Hidrolases/metabolismo , Transfecção
20.
Rev Bras Enferm ; 71(2): 272-279, 2018.
Artigo em Inglês, Português | MEDLINE | ID: mdl-29412283

RESUMO

OBJECTIVE: To understand the daily lives of people with Parkinson's disease. METHOD: Qualitative research, using as methodological and theoretical referential the Grounded Theory and Symbolic Interactionism, respectively. The in-depth interview was conducted with 30 people with Parkinson's disease. RESULTS: From data analysis, three themes were selected: Living with the disease - living with the treatment and changes in lifestyle; Modifying of one's job performance - revealing incapacity for work and the need to anticipate retirement and; Living with the stigma - the feeling of prejudice against the disease and the perceived limitations of the health services. FINAL CONSIDERATIONS: Living with a chronic and non-transferable disease encompasses social, physical and cultural effects, along with the personal experiences of each unique individual. This study assists the improvement of care to people with the disease, because the care practice emerges from the interactions between the subjects.


Assuntos
Adaptação Psicológica , Doença de Parkinson/psicologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença Crônica/psicologia , Doença Crônica/terapia , Efeitos Psicossociais da Doença , Feminino , Teoria Fundamentada , Humanos , Entrevistas como Assunto , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Pesquisa Qualitativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA