Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 102: 266-278, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35259427

RESUMO

Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract. IBD are associated with a high prevalence of cognitive, behavioural and emotional comorbidities, including anxiety and depression. The link between IBD and the development of behavioural comorbidities is poorly understood. As the intestinal microbiota profoundly influences host behaviour, we sought to determine whether the altered gut microbiota associated with intestinal inflammation contributes to the development of behavioural abnormalities. Using the dextran sulphate sodium (DSS) model of colitis, we characterized intestinal inflammation, behaviour (elevated plus maze and tail suspension test) and the composition of the microbiota in male mice. Cecal contents from colitic mice were transferred into germ-free (GF) or antibiotic (Abx)-treated mice, and behaviour was characterized in recipient mice. Gene expression was measured using qPCR. DSS colitis was characterized by a significant reduction in body weight and an increase in colonic inflammatory markers. These changes were accompanied by increased anxiety-like behaviour, an altered gut microbiota composition, and increased central Tnf expression. Transfer of the cecal matter from colitic mice induced similar behavioural changes in both GF and Abx-treated recipient mice, with no signs of colonic or neuroinflammation. Upon characterization of the microbiota in donor and recipient mice, specific taxa were found to be associated with behavioural changes, notably members of the Lachnospiraceae family. Behavioural abnormalities associated with intestinal inflammation are transmissible via transfer of cecal matter, suggesting that alterations in the composition of the gut microbiota play a key role in driving behavioural changes in colitis.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Microbiota , Animais , Colite/induzido quimicamente , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Adv Exp Med Biol ; 1383: 55-69, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587146

RESUMO

Propulsive gastrointestinal (GI) motility is critical for digestive physiology and host defense. GI motility is finely regulated by the intramural reflex pathways of the enteric nervous system (ENS). The ENS is in turn regulated by luminal factors: diet and the gut microbiota. The gut microbiota is a vast ecosystem of commensal bacteria, fungi, viruses, and other microbes. The gut microbiota not only regulates the motor programs of the ENS but also is critical for the normal structure and function of the ENS. In this chapter, we highlight recent research that has shed light on the microbial mechanisms of interaction with the ENS involved in the control of motility. Toll-like receptor signaling mechanisms have been shown to maintain the structural integrity of the ENS and the neurochemical phenotypes of enteric neurons, in part through the production of trophic factors including glia-derived neurotrophic factor. Microbiota-derived short-chain fatty acids and/or single-stranded RNA regulates the synthesis of serotonin in enterochromaffin cells, which are involved in the initiation of enteric reflexes, among other functions. Further evidence suggests a crucial role for microbial modulation of serotonin in maintaining the integrity of the ENS through enteric neurogenesis. Understanding the microbial pathways of enteric neural control sheds new light on digestive health and provides novel treatment strategies for GI motility disorders.


Assuntos
Sistema Nervoso Entérico , Microbioma Gastrointestinal , Microbiota , Microbioma Gastrointestinal/fisiologia , Serotonina/metabolismo , Sistema Nervoso Entérico/metabolismo , Neurônios/fisiologia , Motilidade Gastrointestinal/fisiologia
3.
Proc Natl Acad Sci U S A ; 116(13): 5955-5960, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850515

RESUMO

Copper is a critical enzyme cofactor in the body but also a potent cellular toxin when intracellularly unbound. Thus, there is a delicate balance of intracellular copper, maintained by a series of complex interactions between the metal and specific copper transport and binding proteins. The gastrointestinal (GI) tract is the primary site of copper entry into the body and there has been considerable progress in understanding the intricacies of copper metabolism in this region. The GI tract is also host to diverse bacterial populations, and their role in copper metabolism is not well understood. In this study, we compared the isotopic fractionation of copper in the GI tract of mice with intestinal microbiota significantly depleted by antibiotic treatment to that in mice not receiving such treatment. We demonstrated variability in copper isotopic composition along the length of the gut. A significant difference, ∼1.0‰, in copper isotope abundances was measured in the proximal colon of antibiotic-treated mice. The changes in copper isotopic composition in the colon are accompanied by changes in copper transporters. Both CTR1, a copper importer, and ATP7A, a copper transporter across membranes, were significantly down-regulated in the colon of antibiotic-treated mice. This study demonstrated that isotope abundance measurements of metals can be used as an indicator of changes in metabolic processes in vivo. These measurements revealed a host-microbial interaction in the GI tract involved in the regulation of copper transport.


Assuntos
Antibacterianos/farmacologia , Colo/efeitos dos fármacos , Cobre/metabolismo , Animais , Proteínas de Transporte de Cátions/metabolismo , Colo/química , Colo/metabolismo , Cobre/análise , Transportador de Cobre 1 , ATPases Transportadoras de Cobre/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Isótopos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Superóxido Dismutase-1/metabolismo
4.
Brain Behav Immun ; 98: 317-329, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34461234

RESUMO

The intestinal microbiota plays an important role in regulating brain functions and behaviour. Microbiota-dependent changes in host physiology have been suggested to be key contributors to psychiatric conditions. However, specific host pathways modulated by the microbiota involved in behavioural control are lacking. Here, we assessed the role of the aryl hydrocarbon receptor (Ahr) in modulating microbiota-related alterations in behaviour in male and female mice after antibiotic (Abx) treatment. Mice of both sexes were treated with Abx to induce bacterial depletion. Mice were then tested in a battery of behavioural tests, including the elevated plus maze and open field tests (anxiety-like behaviour), 3 chamber test (social preference), and the tail suspension and forced swim tests (despair behaviour). Behavioural measurements in the tail suspension test were also performed after microbiota reconstitution and after administration of an Ahr agonist, ß-naphthoflavone. Gene expression analyses were performed in the brain, liver, and colon by qPCR. Abx-induced bacterial depletion did not alter anxiety-like behaviour, locomotion, or social preference in either sex. A sex-dependent effect was observed in despair behaviour. Male mice had a reduction in despair behaviour after Abx treatment in both the tail suspension and forced swim tests. A similar alteration in despair behaviour was observed in Ahr knockout mice. Despair behaviour was normalized by either microbiota recolonization or Ahr activation in Abx-treated mice. Ahr activation by ß-naphthoflavone was confirmed by increased expression of the Ahr-target genes Cyp1a1, Cyp1b1, and Ahrr. Our results demonstrate a role for Ahr in mediating the behaviours that are regulated by the crosstalk between the intestinal microbiota and the host. Ahr represents a novel potential modulator of behavioural conditions influenced by the intestinal microbiota.


Assuntos
Microbioma Gastrointestinal , Receptores de Hidrocarboneto Arílico , Animais , Antibacterianos/farmacologia , Citocromo P-450 CYP1A1 , Feminino , Masculino , Camundongos , Camundongos Knockout
5.
Brain Behav Immun ; 89: 224-232, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32592863

RESUMO

Patients with rheumatoid arthritis experience chronic pain, depression and fatigue, even when inflammation of the joints is well controlled. To study the relationship between arthritis, depression, and sustained pain when articular inflammation is no longer observed, we tested the hypothesis that brain TNF drives post-inflammation depression-like behavior and persistent pain in experimental arthritis. The murine model of antigen-induced arthritis (AIA) was used to evaluate the effects of knee inflammation on sustained pain and depression-like behavior. We measured joint pain using an automated dynamic plantar algesiometer and depression-like behavior with the tail suspension test. Cytokines were measured by Luminex assay and ELISA. TNF in the brain was blocked by intracerebroventricular injection of anti-TNF antibodies. Histological damage and elevated levels of cytokines were observed in the knee 24 h after antigen treatment, but not at 13 days. Reduced pain thresholds were seen 24 h and 13 days after treatment. Depression-like behavior was observed on day 13. Treatment with the antidepressant imipramine reduced both depression-like behavior and persistent pain. However, blocking joint pain with the analgesic dipyrone did not alter depression-like behavior. Elevated levels of TNF, CCL2, and CXCL-1 were observed in the hippocampus 24 h after treatment, with TNF remaining elevated at day 13. Intracerebroventricular infusion of an anti-TNF antibody blocked depression-like behavior and reduced persistent pain. We have demonstrated that depression-like behavior and pain is sustained in AIA mice after the resolution of inflammation. These changes are associated with elevated levels of TNF in the hippocampus and are dependent upon brain TNF. The findings reveal an important mechanistic link between the expression of chronic pain and depression in experimental arthritis. Furthermore, they suggest treating depression in rheumatoid arthritis may positively impact other debilitating features of this condition.


Assuntos
Artrite Experimental , Fator de Necrose Tumoral alfa , Animais , Artrite Experimental/complicações , Encéfalo/metabolismo , Depressão , Humanos , Inflamação , Camundongos , Dor , Fator de Necrose Tumoral alfa/metabolismo
6.
Mikrochim Acta ; 186(3): 174, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771008

RESUMO

A carbon paste electrode (CPE) was modified with graphite oxide (GrO) and ß-cyclodextrin (CD) to obtain a sensor for simultaneous voltammetric determination of levodopa (LD), piroxicam (PRX), ofloxacin (OFX) and methocarbamol (MCB). The morphology, structure and electrochemical properties of the functionalized GrO were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, contact angle measurements and cyclic voltammetry. Under the optimal experimental conditions, the sensor is capable of detecting LD, PRX, OFX and MCB by square wave voltammetry (SWV) at working potentials of +0.40, +0.60, +1.03 and + 1.27 V (versus Ag/AgCl), respectively. Response is linear from 1.0 to 20 µM for LD, from 1.0 to 15 µM for PRX, from 1.0 to 20 µM for OFX, and from 1.0 to 50 µM for MCB. The respective limits of detection are 65, 105, 89 and 400 nM. The method was successfully applied to the simultaneous determination of LD, PRX, OFX and MCB in (spiked) real river water and synthetic urine samples, and the results were in agreement with those obtained using a spectrophotometric method, with recoveries close to 100%. Graphical abstract Schematic presentation of a novel electroanalytical method employing a carbon paste electrode modified with graphite oxide and ß-cyclodextrin for the simultaneous determination of levodopa, piroxicam, ofloxacin and methocarbamol in urine and river water samples by square wave voltammetry.


Assuntos
Grafite/química , Levodopa/urina , Metocarbamol/urina , Ofloxacino/urina , Piroxicam/urina , beta-Ciclodextrinas/química , Técnicas Eletroquímicas/métodos , Eletrodos , Levodopa/química , Limite de Detecção , Metocarbamol/química , Ofloxacino/química , Óxidos/química , Piroxicam/química , Reprodutibilidade dos Testes , Rios/química
7.
Analyst ; 139(11): 2842-9, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24733185

RESUMO

A simple and highly selective electrochemical method was developed for the single or simultaneous determination of dopamine (DA) and epinephrine (EP) in human body fluids using a glassy carbon electrode modified with nickel oxide nanoparticles and carbon nanotubes within a dihexadecylphosphate film using square-wave voltammetry (SWV) or differential-pulse voltammetry (DPV). Using DPV with the proposed electrode, a separation of ca. 360 mV between the peak reduction potentials of DA and EP present in binary mixtures was obtained. The analytical curves for the simultaneous determination of dopamine and epinephrine showed an excellent linear response, ranging from 7.0 × 10(-8) to 4.8 × 10(-6) and 3.0 × 10(-7) to 9.5 × 10(-6) mol L(-1) for DA and EP, respectively. The detection limits for the simultaneous determination of DA and EP were 5.0 × 10(-8) mol L(-1) and 8.2 × 10(-8) mol L(-1), respectively. The proposed method was successfully applied in the simultaneous determination of these analytes in human body fluid samples of cerebrospinal fluid, human serum and lung fluid.


Assuntos
Líquidos Corporais/química , Dopamina/análise , Eletrodos , Epinefrina/análise , Nanopartículas Metálicas , Nanotubos de Carbono , Níquel/química , Organofosfatos/química , Humanos , Microscopia Eletrônica de Varredura
8.
Analyst ; 139(11): 2832-41, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24752746

RESUMO

A novel vertically aligned carbon nanotube/graphene oxide (VACNT-GO) electrode is proposed, and its ability to determine atorvastatin calcium (ATOR) in pharmaceutical and biological samples by differential pulse adsorptive stripping voltammetry (DPAdSV) is evaluated. VACNT films were prepared on a Ti substrate by a microwave plasma chemical vapour deposition method and then treated with oxygen plasma to produce the VACNT-GO electrode. The oxygen plasma treatment exfoliates the carbon nanotube tips exposing graphene foils and inserting oxygen functional groups, these effects improved the VACNT wettability (super-hydrophobic) which is crucial for its electrochemical application. The electrochemical behaviour of ATOR on the VACNT-GO electrode was studied by cyclic voltammetry, which showed that it underwent an irreversible oxidation process at a potential of +1.08 V in pHcond 2.0 (0.2 mol L(-1) buffer phosphate solution). By applying DPAdSV under optimized experimental conditions the analytical curve was found to be linear in the ATOR concentration range of 90 to 3.81 × 10(3) nmol L(-1) with a limit of detection of 9.4 nmol L(-1). The proposed DPAdSV method was successfully applied in the determination of ATOR in pharmaceutical and biological samples, and the results were in close agreement with those obtained by a comparative spectrophotometric method at a confidence level of 95%.


Assuntos
Eletrodos , Grafite/química , Ácidos Heptanoicos/análise , Nanotubos de Carbono , Pirróis/análise , Adsorção , Atorvastatina , Concentração de Íons de Hidrogênio , Cinética , Limite de Detecção , Microscopia Eletrônica de Varredura , Óxidos/química , Preparações Farmacêuticas/química
9.
Analyst ; 139(16): 3961-7, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24919542

RESUMO

Voltammetric studies have been carried out using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs) and the ionic liquid 1-butyl-3-methylimidazolium chloride (IL). Studies on the electrochemical properties of GCEs modified with MWCNTs and IL within different polymeric films (dihexadecylphosphate (DHP), Nafion, and chitosan (CTS)) were performed using a [Fe(CN)6](4-/3-) electrochemical probe. The modified GCE with different polymeric films was also tested for ciprofibrate (CPF) sensing in the presence and absence of IL in the film. The presence of IL and the MWCNTs improved the electrochemical response for CPF in all cases due to a synergic effect, and the IL-MWCNTs-DHP/GCE showed a great voltammetric profile for CPF detection. The IL-MWCNTs-DHP/GCE and differential pulse voltammetry (DPV) were used for the determination of CPF. An analytical curve was obtained for CPF in the concentration range of 2.50 × 10(-7) to 7.41 × 10(-6) mol L(-1) with a detection limit of 9.20 × 10(-8) mol L(-1). The proposed DPV method was successfully applied for CPF determination in pharmaceutical samples, and the results obtained agree with the results obtained using a spectrophotometric method at a confidence level of 95%.

10.
An Acad Bras Cienc ; 86(4): 1833-48, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25590720

RESUMO

The effects of food restriction (FR) on the morphoquantitative aspects of the wall and myenteric neurons of the proximal colon in adult rats were analysed. FR was imposed by duplication of the experimental brood size in relation to the control brood during lactation. The FR group received a 50% reduction of food from weaning until 90 days of age. Samples of the colon underwent histological processing to morphometrically analyze the crypts, muscularis mucosae, tunica mucosa, and muscularis externa. We determined the number of goblet cells and serotoninergic enteroendocrine cells, and morphoquantitatively studied the myenteric neuronal population. FR caused hypertrophy in the tunica mucosa, increase in crypt depth and in the muscular layer of the mucosa, a decrease in the thickness of the tunica muscularis and in the number of goblet cells and an increase in serotoninergic cells. A higher neuronal density in the ganglia and a reduction of the cell profile area were observed in the FR group. FR imposed since lactation led to hypertrophy of the tunica mucosa, a reduction of neutral mucin production, atrophy of the tunica muscularis, and an increase in the survival neuronal in adult rats, attributable to an increase in the number of serotoninergic enteroendocrine cells in mucosa.


Assuntos
Restrição Calórica/efeitos adversos , Colo/patologia , Mucosa Intestinal/patologia , Plexo Mientérico/patologia , Animais , Animais Recém-Nascidos , Colo/inervação , Feminino , Lactação , Gravidez , Ratos Wistar
11.
Vet Res Commun ; 48(2): 1097-1109, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114776

RESUMO

Picobirnavirus (PBV) is a family of non-enveloped double-stranded RNA viruses with bisegmented genomes. Segment 1 encodes the capsid protein and segment 2 encodes RNA-dependent RNA polymerase. They exhibit high genomic heterogeneity and infect a wide range of vertebrate hosts, including humans. The objective of this study was to expand our knowledge of the circulation of PBV in free-living animals from two regions (Brazil and Argentina) of the Atlantic Forest. Fecal samples were analyzed from free-living animals: tapir, brocket deer, peccary, and different species of rodents and marsupials. A total of 133 samples were collected and analyzed by RT-PCR, of which 44 (33.08%) were PBV-positive. Nine amplicons were sequenced, five species from Argentina and four from Brazil, and phylogenetic analysis was performed. The nucleotide and amino acid identities of the PBV strains detected in animals from Argentina and Brazil were between 66.3% and 82.5% and between 55.3% and 74.2%, respectively. The analysed strains presented conserved nucleotide blocks without distinction of the host species. The phylogenetic tree showed that PBV strains from Atlantic Forest animals belonging to genogroup I were grouped into different clusters, without defining groups according to host species (human or animal) or the geographical area of detection. This is the first study on PBV in free-living animals in the Atlantic Forest. Our analysis suggested that PBV strains can infect different animal species, leading to PBV transmission between animals and humans. This reinforces the hypothesis of previous crossover points in the ecology and evolution of heterologous PBV strains.


Assuntos
Cervos , Picobirnavirus , Infecções por Vírus de RNA , Animais , Humanos , Picobirnavirus/genética , Filogenia , Infecções por Vírus de RNA/veterinária , Fezes , Nucleotídeos
12.
Bioelectrochemistry ; 157: 108632, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38181592

RESUMO

Electrochemical biosensors are known for their high sensitivity, selectivity, and low cost. Recently, they have gained significant attention and became particularly important as promising tools for the detection of COVID-19 biomarkers, since they offer a rapid and accurate means of diagnosis. Biorecognition strategies are a crucial component of electrochemical biosensors and determine their specificity and sensitivity based on the interaction of biological molecules, such as antibodies, enzymes, and DNA, with target analytes (e.g., viral particles, proteins and genetic material) to create a measurable signal. Different biorecognition strategies have been developed to enhance the performance of electrochemical biosensors, including direct, competitive, and sandwich binding, alongside nucleic acid hybridization mechanisms and gene editing systems. In this review article, we present the different strategies used in electrochemical biosensors to target SARS-CoV-2 and other COVID-19 biomarkers, as well as explore the advantages and disadvantages of each strategy and highlight recent progress in this field. Additionally, we discuss the challenges associated with developing electrochemical biosensors for clinical COVID-19 diagnosis and their widespread commercialization.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Teste para COVID-19 , Biomarcadores , Técnicas Eletroquímicas
13.
Prev Vet Med ; 222: 106094, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103433

RESUMO

SARS-CoV-2 has caused 775 outbreaks in 29 animal species across 36 countries, including dogs, cats, ferrets, minks, non-human primates, white-tailed deer, and lions. Although transmission from owners to dogs has been extensively described, no study to date has also compared sheltered, foster home and owner dogs and associated risk factors. This study aimed to identify SARS-CoV-2 infection and anti-SARS-CoV-2 antibodies from sheltered, fostered, and owned dogs, associated with environmental and management risk factors. Serum samples and swabs were collected from each dog, and an epidemiological questionnaire was completed by the shelter manager, foster care, and owner. A total of 111 dogs, including 222 oropharyngeal and rectal swabs, tested negative by RT-qPCR. Overall, 18/89 (20.22%) dogs presented IgG antibodies against the N protein of SARS-CoV-2 by magnetic ELISA, while none showed a reaction to the Spike protein. SARS-CoV-2 antibodies showed an age-related association, with 4.16 chance of positivity in adult dogs when compared with young ones. High population density among dogs and humans, coupled with repeated COVID-19 exposure, emerged as potential risk factors in canine virus epidemiology. Dogs exhibited higher seropositivity rates in these contexts. Thus, we propose expanded seroepidemiological and molecular studies across species and scenarios, including shelter dogs.


Assuntos
COVID-19 , Doenças do Gato , Cervos , Doenças do Cão , Leões , Cães , Animais , Gatos , COVID-19/epidemiologia , COVID-19/veterinária , SARS-CoV-2 , Estudos Soroepidemiológicos , Furões , Anticorpos Antivirais , Vison , Doenças do Cão/epidemiologia
14.
BMC Infect Dis ; 13: 418, 2013 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-24010735

RESUMO

BACKGROUND: Childhood diarrheal diseases remain highly endemic in developing areas of Brazil. The importance of Escherichia coli among children with diarrhea in these areas was unknown. This study determined the prevalence of different E. coli categories in symptomatic and asymptomatic children from low socioeconomic level rural communities in southeastern Brazil. METHODS: A total of 560 stool samples were collected from 141 children with diarrhea (< 10 years) and 419 apparently healthy controls who resided in 23 communities. E. coli isolates (n = 1943) were subjected to two multiplex PCRs developed for the detection of enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC), diffusely adherent E. coli (DAEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), and Shiga toxin-producing E. coli (STEC). Strains were also examined for the presence of EPEC, EAEC, and DAEC by assays of adhesion to HEp-2 cells and by hybridization with specific DNA probes. RESULTS: Diarrheagenic E. coli strains were isolated from 253 (45.2%) children, and were associated with diarrhea in children aged < 5 years (p < 0.001). EAEC (20.9%), DAEC (11.6%), EPEC (9.3%) were the most frequent pathotypes, followed by ETEC (2.7%), EIEC (0.5%), and STEC (0.2%). Depending of the assay, EPEC, EAEC, and DAEC (collectively termed enteroadherent E. coli) strains were isolated in 45% to 56% of diarrhea cases, a significantly higher incidence than in controls (P < 0.05). Individually, only DAEC showed significant association with diarrhea (p < 0.05), particularly in children aged 2-5 years. CONCLUSION: This study indicates that enteroadherent E. coli is an important cause of diarrhea in children living in low socioeconomic level communities in southeastern Brazil. Our results reveal that the PCR1 assay is an excellent tool for the identification of EAEC and DAEC.


Assuntos
Diarreia/microbiologia , Escherichia coli Enteropatogênica/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Brasil/epidemiologia , Pré-Escolar , Diarreia/diagnóstico , Diarreia/economia , Diarreia/epidemiologia , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/economia , Infecções por Escherichia coli/epidemiologia , Fezes/microbiologia , Feminino , Genótipo , Humanos , Incidência , Lactente , Masculino , Fenótipo , Pobreza
15.
Talanta Open ; 7: 100201, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36959870

RESUMO

To help meet the global demand for reliable and inexpensive COVID-19 testing and environmental analysis of SARS-CoV-2, the present work reports the development and application of a highly efficient disposable electrochemical immunosensor for the detection of SARS-CoV-2 in clinical and environmental matrices. The sensor developed is composed of a screen-printed electrode (SPE) array which was constructed using conductive carbon ink printed on polyethylene terephthalate (PET) substrate made from disposable soft drink bottles. The recognition site (Spike S1 Antibody (anti-SP Ab)) was covalently immobilized on the working electrode surface, which was effectively modified with carbon black (CB) and gold nanoparticles (AuNPs). The immunosensing material was subjected to a multi-technique characterization analysis using X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) with elemental analysis via energy dispersive spectroscopy (EDS). The electrochemical characterization of the electrode surface and analytical measurements were performed using cyclic voltammetry (CV) and square-wave voltammetry (SWV). The immunosensor was easily applied for the conduct of rapid diagnoses or accurate quantitative environmental analyses by setting the incubation period to 10 min or 120 min. Under optimized conditions, the biosensor presented limits of detection (LODs) of 101 fg mL-1 and 46.2 fg mL-1 for 10 min and 120 min incubation periods, respectively; in addition, the sensor was successfully applied for SARS-CoV-2 detection and quantification in clinical and environmental samples. Considering the costs of all the raw materials required for manufacturing 200 units of the AuNP-CB/PET-SPE immunosensor, the production cost per unit is 0.29 USD.

16.
J Pharm Biomed Anal ; 221: 115032, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36152488

RESUMO

The outstanding electronic properties of carbon black (CB) and its economic advantages have fueled its application as nanostructured electrode material for the development of new electrochemical sensors and biosensors. CB-based electrochemical sensing devices have been found to exhibit high surface area, fast charge transfer kinetics, and excellent functionalization. In the present work, we set forth a comprehensive review of the recent advances made in the development and application of CB-based electrochemical devices for pharmaceutical and biomedical analyses - from quantitative monitoring of drug formulations to clinical diagnoses - and the underlying challenges and constraints that need to be overcome. We also present a thorough discussion about the strategies and techniques employed in the development of new electrochemical sensing platforms and in the enhancement of their analytical properties and biocompatibility for anchoring active biomolecules, as well as the combination of these sensing devices with other materials aiming at boosting the performance and efficiency of the sensors.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Nanoestruturas/química , Preparações Farmacêuticas , Fuligem
17.
Talanta ; 222: 121539, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33167247

RESUMO

The present study reports the development of graphite pencil electrode modified with palladium nanoparticles (PdNPs) and its application as an electrochemical sensor for the simultaneous detection of direct yellow 50, tryptophan, carbendazim and caffeine in river water and synthetic urine samples. The combination involving the conductive surface of the graphite pencil electrode (GPE) and the enlargement of the surface area caused by the use of palladium nanoparticles (PdNPs) led to the improvement of the analytical performance of the proposed device. The surface of the GPE-PdNPs was characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The charge transfer kinetics of the electrode was evaluated based on the electrochemical analysis of the potassium ferricyanide redox probe. Using square wave voltammetry (SWV), well-defined and fully resolved anodic peaks were detected for the analytes, with peak-to-peak potential separation not less than 200 mV. Under optimised conditions, the following linear range concentrations were obtained: 0.99-9.9 µmol L-1 for direct yellow 50; 1.2-12 µmol L-1 for tryptophan; 0.20-1.6 µmol L-1 for carbendazim; and 25-190 µmol L-1 for caffeine. The sensor showed good sensitivity, repeatability, and stability. The device was successfully applied for the determination of analytes in urine and river water samples, where recovery rates close to 100% were obtained. Due to its low cost and reusability by simple polishing, the sensor has strong potential to be used as an electrochemical sensor for the determination of different analytes.


Assuntos
Grafite , Nanopartículas Metálicas , Compostos Azo , Benzimidazóis , Cafeína , Carbamatos , Técnicas Eletroquímicas , Eletrodos , Naftalenos , Paládio , Triptofano
18.
Microbiome ; 9(1): 210, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702353

RESUMO

BACKGROUND: The intestinal microbiota plays an important role in regulating gastrointestinal (GI) physiology in part through interactions with the enteric nervous system (ENS). Alterations in the gut microbiome frequently occur together with disturbances in enteric neural control in pathophysiological conditions. However, the mechanisms by which the microbiota regulates GI function and the structure of the ENS are incompletely understood. Using a mouse model of antibiotic (Abx)-induced bacterial depletion, we sought to determine the molecular mechanisms of microbial regulation of intestinal function and the integrity of the ENS. Spontaneous reconstitution of the Abx-depleted microbiota was used to assess the plasticity of structure and function of the GI tract and ENS. Microbiota-dependent molecular mechanisms of ENS neuronal survival and neurogenesis were also assessed. RESULTS: Adult male and female Abx-treated mice exhibited alterations in GI structure and function, including a longer small intestine, slower transit time, increased carbachol-stimulated ion secretion, and increased intestinal permeability. These alterations were accompanied by the loss of enteric neurons in the ileum and proximal colon in both submucosal and myenteric plexuses. A reduction in the number of enteric glia was only observed in the ileal myenteric plexus. Recovery of the microbiota restored intestinal function and stimulated enteric neurogenesis leading to increases in the number of enteric glia and neurons. Lipopolysaccharide (LPS) supplementation enhanced neuronal survival alongside bacterial depletion, but had no effect on neuronal recovery once the Abx-induced neuronal loss was established. In contrast, short-chain fatty acids (SCFA) were able to restore neuronal numbers after Abx-induced neuronal loss, demonstrating that SCFA stimulate enteric neurogenesis in vivo. CONCLUSIONS: Our results demonstrate a role for the gut microbiota in regulating the structure and function of the GI tract in a sex-independent manner. Moreover, the microbiota is essential for the maintenance of ENS integrity, by regulating enteric neuronal survival and promoting neurogenesis. Molecular determinants of the microbiota, LPS and SCFA, regulate enteric neuronal survival, while SCFA also stimulates neurogenesis. Our data reveal new insights into the role of the gut microbiota that could lead to therapeutic developments for the treatment of enteric neuropathies. Video abstract.


Assuntos
Sistema Nervoso Entérico , Microbioma Gastrointestinal , Animais , Sistema Nervoso Entérico/fisiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Intestino Delgado , Masculino , Camundongos , Neuroglia , Neurônios/fisiologia
19.
Physiol Behav ; 216: 112802, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31931038

RESUMO

Inflammatory bowel disease (IBD) is characterized by relapsing periods of gut inflammation, and is comorbid with depression, anxiety, and cognitive deficits. Animal models of IBD that explore the behavioral consequences almost exclusively use acute models of gut inflammation, which fails to recapitulate the cyclic, chronic nature of IBD. This study sought to identify behavioral differences in digging, memory, and stress-coping strategies in mice exposed to one (acute) or three (chronic) cycles of gut inflammation, using the dextran sodium sulfate (DSS) model of colitis. Similar levels of gut pathology were observed between acute and chronically exposed mice, although mice in the chronic treatment had significantly shorter colons, suggesting more severe disease. Behavioral measures revealed an unexpected pattern in which chronic treatment evoked fewer deficits than acute treatment. Specifically, acutely-treated mice showed alterations in measures of object burying, novel object recognition, object location memory, and stress-coping (forced swim task). Chronically-treated animals, however, showed similar alterations in object burying, but not the other measures. These data suggest an adaptive or tolerizing effect of repeated cycles of peripheral gut inflammation on mnemonic function and stress-coping, whereas some other behaviors continue to be affected by gut inflammation. We speculate that the normalization of some functions may involve the reversion to the baseline state of the hypothalamic-pituitary-adrenal axis and/or levels of neuroinflammation, which are both activated by the first exposure to the colitic agent.


Assuntos
Adaptação Psicológica , Colite/psicologia , Adaptação Psicológica/fisiologia , Animais , Colite/patologia , Colite/fisiopatologia , Colo/efeitos dos fármacos , Colo/patologia , Sulfato de Dextrana/farmacologia , Discriminação Psicológica , Modelos Animais de Doenças , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Recidiva
20.
PLoS One ; 15(2): e0229415, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32109945

RESUMO

Avian adenoviruses (AdVs) are a very diverse group of pathogens causing diseases in poultry and wild birds. Wild birds, endangered by habitat loss and habitat fragmentation in the tropical forests, are recognised to play a role in the transmission of various AdVs. In this study, two novel, hitherto unknown AdVs were described from faecal samples of smooth-billed ani and tropical screech owl. The former was classified into genus Aviadenovirus, the latter into genus Atadenovirus, and both viruses most probably represent new AdV species as well. These results show that there is very limited information about the biodiversity of AdVs in tropical wild birds, though viruses might have a major effect on the population of their hosts or endanger even domesticated animals. Surveys like this provide new insights into the diversity, evolution, host variety, and distribution of avian AdVs.


Assuntos
Infecções por Adenoviridae/veterinária , Adenoviridae/genética , Adenoviridae/isolamento & purificação , Aves/virologia , DNA Viral/análise , Estrigiformes/virologia , Adenoviridae/classificação , Infecções por Adenoviridae/virologia , Animais , Aves/genética , DNA Viral/genética , Filogenia , Estrigiformes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA