RESUMO
Rationale: Multiciliated cell (MCC) loss and/or dysfunction is common in the small airways of patients with chronic obstructive pulmonary disease (COPD), but it is unclear if this contributes to COPD lung pathology. Objectives: To determine if loss of p73 causes a COPD-like phenotype in mice and explore whether smoking or COPD impact p73 expression. Methods: p73floxE7-E9 mice were crossed with Shh-Cre mice to generate mice lacking MCCs in the airway epithelium. The resulting p73Δairway mice were analyzed using electron microscopy, flow cytometry, morphometry, forced oscillation technique, and single-cell RNA sequencing. Furthermore, the effects of cigarette smoke on p73 transcript and protein expression were examined using in vitro and in vivo models and in studies including airway epithelium from smokers and patients with COPD. Measurements and Main Results: Loss of functional p73 in the respiratory epithelium resulted in a near-complete absence of MCCs in p73Δairway mice. In adulthood, these mice spontaneously developed neutrophilic inflammation and emphysema-like lung remodeling and had progressive loss of secretory cells. Exposure of normal airway epithelium cells to cigarette smoke rapidly and durably suppressed p73 expression in vitro and in vivo. Furthermore, tumor protein 73 mRNA expression was reduced in the airways of current smokers (n = 82) compared with former smokers (n = 69), and p73-expressing MCCs were reduced in the small airways of patients with COPD (n = 11) compared with control subjects without COPD (n = 12). Conclusions: Loss of functional p73 in murine airway epithelium results in the absence of MCCs and promotes COPD-like lung pathology. In smokers and patients with COPD, loss of p73 may contribute to MCC loss or dysfunction.
Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Humanos , Camundongos , Epitélio/metabolismo , Pulmão , Doença Pulmonar Obstrutiva Crônica/patologiaRESUMO
Extracellular vesicles and nanoparticles (EVPs) are now recognized as a novel form of cell-cell communication. All cells release a wide array of heterogeneous EVPs with distinct protein, lipid, and RNA content, dependent on the pathophysiological state of the donor cell. The overall cargo content in EVPs is not equivalent to cellular levels, implying a regulated pathway for selection and export. In cancer, release and uptake of EVPs within the tumour microenvironment can influence growth, proliferation, invasiveness, and immune evasion. Secreted EVPs can also have distant, systemic effects that can promote metastasis. Here, we review current knowledge of EVP biogenesis and cargo selection with a focus on the role that extracellular RNA plays in oncogenesis and metastasis. Almost all subtypes of RNA have been identified in EVPs, with miRNAs being the best characterized. We review the roles of specific miRNAs that have been detected in EVPs and that play a role in oncogenesis and metastasis.
Assuntos
Carcinogênese , Resistencia a Medicamentos Antineoplásicos , Vesículas Extracelulares , MicroRNAs , Metástase Neoplásica , Neoplasias , Microambiente Tumoral , Humanos , Vesículas Extracelulares/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinogênese/genética , Animais , Regulação Neoplásica da Expressão Gênica , Comunicação CelularRESUMO
HDL are dynamic transporters of diverse molecular cargo and play critical roles in lipid metabolism and inflammation. We have previously reported that HDL transport both host and nonhost small RNAs (sRNA) based on quantitative PCR and sRNA sequencing approaches; however, these methods require RNA isolation steps which have potential biases and may not isolate certain forms of RNA molecules from samples. HDL have also been reported to accept functional sRNAs from donor macrophages and deliver them to recipient endothelial cells; however, using PCR to trace HDL-sRNA intercellular communication has major limitations. The present study aims to overcome these technical barriers and further understand the pathways involved in HDL-mediated bidirectional flux of sRNAs between immune cells. To overcome these technical limitations, SYTO RNASelect, a lipid-penetrating RNA dye, was used to quantify a) overall HDL-sRNA content, b) bidirectional flux of sRNAs between HDL and immune cells, c) HDL-mediated intercellular communication between immune cells, and d) HDL-mediated RNA export changes in disease. Live cell imaging and loss-of-function assays indicate that the endo-lysosomal system plays a critical role in macrophage storage and export of HDL-sRNAs. These results identify HDL as a substantive mediator of intercellular communication between immune cells and demonstrate the importance of endocytosis for recipient cells of HDL-sRNAs. Utilizing a lipid-penetrating RNA-specific fluorescence dye, we were able to both quantify the absolute concentration of sRNAs transported by HDL and characterize HDL-mediated intercellular RNA transport between immune cells.
Assuntos
Pequeno RNA não Traduzido , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Lipoproteínas HDL , Células Endoteliais/metabolismo , Macrófagos/metabolismo , Comunicação Celular , Células Dendríticas/metabolismoRESUMO
Extracellular small RNAs (sRNAs) are abundant in many biofluids, but little is known about their mechanisms of transport and stability in RNase-rich environments. We previously reported that high-density lipoproteins (HDLs) in mice were enriched with multiple classes of sRNAs derived from the endogenous transcriptome, but also from exogenous organisms. Here, we show that human HDL transports tRNA-derived sRNAs (tDRs) from host and nonhost species, the profiles of which were found to be altered in human atherosclerosis. We hypothesized that HDL binds to tDRs through apolipoprotein A-I (apoA-I) and that these interactions are conferred by RNA-specific features. We tested this using microscale thermophoresis and electrophoretic mobility shift assays and found that HDL binds to tDRs and other single-stranded sRNAs with strong affinity but did not bind to double-stranded RNA or DNA. Furthermore, we show that natural and synthetic RNA modifications influenced tDR binding to HDL. We demonstrate that reconstituted HDL bound to tDRs only in the presence of apoA-I, and purified apoA-I alone were able to bind sRNA. Conversely, phosphatidylcholine vesicles did not bind tDRs. In summary, we conclude that HDL binds to single-stranded sRNAs likely through nonionic interactions with apoA-I. These results highlight binding properties that likely enable extracellular RNA communication and provide a foundation for future studies to manipulate HDL-sRNA interactions for therapeutic approaches to prevent or treat disease.
Assuntos
Lipoproteínas HDL , Pequeno RNA não Traduzido , Animais , Apolipoproteína A-I/metabolismo , Aterosclerose , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Camundongos , Fosfatidilcolinas , Pequeno RNA não Traduzido/químicaRESUMO
Reduced activity of paraoxonase 1 (PON1), a high-density lipoprotein (HDL)-associated enzyme, has been implicated in the development of atherosclerosis. Post-translational modifications of PON1 may represent important mechanisms leading to reduced PON1 activity. Under atherosclerotic conditions, myeloperoxidase (MPO) is known to associate with HDL. MPO generates the oxidants hypochlorous acid and nitrogen dioxide, which can lead to post-translational modification of PON1, including tyrosine modifications that inhibit PON1 activity. Nitrogen dioxide also drives lipid peroxidation, leading to the formation of reactive lipid dicarbonyls such as malondialdehyde and isolevuglandins, which modify HDL and could inhibit PON1 activity. Because isolevuglandins are more reactive than malondialdehyde, we used in vitro models containing HDL, PON1, and MPO to test the hypothesis that IsoLG formation by MPO and its subsequent modification of HDL contributes to MPO-mediated reductions in PON1 activity. Incubation of MPO with HDL led to modification of HDL proteins, including PON1, by IsoLG. Incubation of HDL with IsoLG reduced PON1 lactonase and antiperoxidation activities. IsoLG modification of recombinant PON1 markedly inhibited its activity, while irreversible IsoLG modification of HDL before adding recombinant PON1 only slightly inhibited the ability of HDL to enhance the catalytic activity of recombinant PON1. Together, these studies support the notion that association of MPO with HDL leads to lower PON1 activity in part via IsoLG-mediated modification of PON1, so that IsoLG modification of PON1 could contribute to increased risk for atherosclerosis, and blocking this modification might prove beneficial to reduce atherosclerosis.
Assuntos
Arildialquilfosfatase/antagonistas & inibidores , Lipídeos/química , Lipoproteínas HDL/metabolismo , Peroxidase/metabolismo , Arildialquilfosfatase/sangue , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/farmacologia , Proteínas Recombinantes/sangue , Proteínas Recombinantes/metabolismoRESUMO
Kidney disease affects intestinal structure and function. Although intestinal lymphatics are central in absorption and remodeling of dietary and synthesized lipids/lipoproteins, little is known about how kidney injury impacts the intestinal lymphatic network, or lipoproteins transported therein. To study this, we used puromycin aminoglycoside-treated rats and NEP25 transgenic mice to show that proteinuric injury expanded the intestinal lymphatic network, activated lymphatic endothelial cells and increased mesenteric lymph flow. The lymph was found to contain increased levels of cytokines, immune cells, and isolevuglandin (a highly reactive dicarbonyl) and to have a greater output of apolipoprotein AI. Plasma levels of cytokines and isolevuglandin were not changed. However, isolevuglandin was also increased in the ileum of proteinuric animals, and intestinal epithelial cells exposed to myeloperoxidase produced more isolevuglandin. Apolipoprotein AI modified by isolevuglandin directly increased lymphatic vessel contractions, activated lymphatic endothelial cells, and enhanced the secretion of the lymphangiogenic promoter vascular endothelial growth factor-C by macrophages. Inhibition of isolevuglandin synthesis by a carbonyl scavenger reduced intestinal isolevuglandin adduct level and lymphangiogenesis. Thus, our data reveal a novel mediator, isolevuglandin modified apolipoprotein AI, and uncover intestinal lymphatic network structure and activity as a new pathway in the crosstalk between kidney and intestine that may contribute to the adverse impact of kidney disease on other organs.
Assuntos
Vasos Linfáticos , Fator C de Crescimento do Endotélio Vascular , Animais , Apolipoproteína A-I , Células Endoteliais , Rim , Linfangiogênese , Camundongos , RatosRESUMO
PURPOSE OF REVIEW: This review highlights recent advances on the mechanisms and impact of HDL-small non-coding RNAs (sRNA) on intercellular communication in atherosclerosis. RECENT FINDINGS: Studies demonstrate that HDL-microRNAs (miRNA) are significantly altered in atherosclerotic cardiovascular disease (ASCVD), and are responsive to diet, obesity, and diabetes. Immune cells, pancreatic beta cells, and neurons are shown to export miRNAs to HDL. In turn, HDL can deliver functional miRNAs to recipient hepatocytes and endothelial cells regulating adhesion molecule expression, cytokines, and angiogenesis. With high-throughput sRNA sequencing, we now appreciate the full sRNA signature on circulating HDL, including the transport of rRNA and tRNA-derived fragments. Strikingly, HDL were highly enriched with exogenous microbial sRNAs. HDL transport a diverse set of host and non-host sRNAs that are altered in cardiometabolic diseases. Given the bioactivity of these sRNAs, they likely contribute to cellular communication within atherosclerotic lesions, and are potential disease biomarkers and therapeutic targets.
Assuntos
Aterosclerose , Diabetes Mellitus , MicroRNAs , Pequeno RNA não Traduzido , Aterosclerose/genética , Células Endoteliais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/genéticaRESUMO
Rationale: Bronchopulmonary dysplasia (BPD) is a leading complication of preterm birth that affects infants born in the saccular stage of lung development at <32 weeks of gestation. Although the mechanisms driving BPD remain uncertain, exposure to hyperoxia is thought to contribute to disease pathogenesis.Objectives: To determine the effects of hyperoxia on epithelial-mesenchymal interactions and to define the mediators of activated Wnt/ß-catenin signaling after hyperoxia injury.Methods: Three hyperoxia models were used: A three-dimensional organotypic coculture using primary human lung cells, precision-cut lung slices (PCLS), and a murine in vivo hyperoxia model. Comparisons of normoxia- and hyperoxia-exposed samples were made by real-time quantitative PCR, RNA in situ hybridization, quantitative confocal microscopy, and lung morphometry.Measurements and Main Results: Examination of an array of Wnt ligands in the three-dimensional organotypic coculture revealed increased mesenchymal expression of WNT5A. Inhibition of Wnt5A abrogated the BPD transcriptomic phenotype induced by hyperoxia. In the PCLS model, Wnt5A inhibition improved alveolarization following hyperoxia exposure, and treatment with recombinant Wnt5a reproduced features of the BPD phenotype in PCLS cultured in normoxic conditions. Chemical inhibition of NF-κB with BAY11-7082 reduced Wnt5a expression in the PCLS hyperoxia model and in vivo mouse hyperoxia model, with improved alveolarization in the PCLS model.Conclusions: Increased mesenchymal Wnt5A during saccular-stage hyperoxia injury contributes to the impaired alveolarization and septal thickening observed in BPD. Precise targeting of Wnt5A may represent a potential therapeutic strategy for the treatment of BPD.
Assuntos
Células Epiteliais Alveolares/metabolismo , Fibroblastos/metabolismo , Hiperóxia/genética , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína Wnt-5a/genética , Animais , Displasia Broncopulmonar , Técnicas de Cocultura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hiperóxia/metabolismo , Hibridização In Situ , Pulmão/crescimento & desenvolvimento , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Microscopia Confocal , NF-kappa B/antagonistas & inibidores , Nitrilas/farmacologia , Técnicas de Cultura de Órgãos , Reação em Cadeia da Polimerase em Tempo Real , Sulfonas/farmacologia , Proteína Wnt-5a/efeitos dos fármacos , Proteína Wnt-5a/metabolismoRESUMO
Decades of epidemiological studies have established the strong inverse relationship between high-density lipoprotein (HDL)-cholesterol concentration and cardiovascular disease. Recent evidence suggests that HDL particle functions, including anti-inflammatory and antioxidant functions, and cholesterol efflux capacity may be more strongly associated with cardiovascular disease protection than HDL cholesterol concentration. These HDL functions are also relevant in non-cardiovascular diseases, including acute and chronic kidney disease. This review examines our current understanding of the kidneys' role in HDL metabolism and homeostasis, and the effect of kidney disease on HDL composition and functionality. Additionally, the roles of HDL particles, proteins, and small RNA cargo on kidney cell function and on the development and progression of both acute and chronic kidney disease are examined. The effect of HDL protein modification by reactive dicarbonyls, including malondialdehyde and isolevuglandin, which form adducts with apolipoprotein A-I and impair proper HDL function in kidney disease, is also explored. Finally, the potential to develop targeted therapies that increase HDL concentration or functionality to improve acute or chronic kidney disease outcomes is discussed.
Assuntos
Nefropatias/metabolismo , Lipoproteínas HDL/metabolismo , Animais , Humanos , Lipoproteínas HDL/genéticaRESUMO
Choline availability modulates neurogenesis and cerebral cortex development through the regulation of neural progenitor cell (NPC) proliferative and differentiation capacity. In this study, we demonstrated that cortical NPC self-renewal is controlled by choline via the expression of a microRNA (miR-129-5p), whose role in the developing brain has not been examined, and which, in turn, inhibits synthesis of the epidermal growth factor receptor (EGFR) protein. Specifically, we found that low choline (LC) availability led to the upregulation of miR-129-5p expression in cortical NPCs in vitro and in vivo, causing the downregulation of EGFR and thereby disrupting NPC self-renewal and cortical neurogenesis. Furthermore, in response to LC availability, methylation potential (the S-adenosylmethionine: S-adenosylhomocysteine ratio) in the developing brain was reduced. Restoring methylation potential in LC cortical NPCs led to the re-establishment of normal miR-129-5p expression. We concluded that inhibiting miR-129-5p function and restoring EGFR protein levels in vivo is sufficient to reverse LC-induced defects in cortical NPC self-renewal. For the first time, to our knowledge, we have identified the molecular links that explain how a change in the availability of the diet metabolite choline impacts the essential cellular processes underlying brain development.-Trujillo-Gonzalez, I., Wang, Y., Friday, W. B., Vickers, K. C., Toth, C. L., Molina-Torres, L., Surzenko, N., Zeisel, S. H. MicroRNA-129-5p is regulated by choline availability and controls EGF receptor synthesis and neurogenesis in the cerebral cortex.
Assuntos
Córtex Cerebral/fisiologia , Colina/genética , Receptores ErbB/genética , MicroRNAs/genética , Neurogênese/genética , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Regulação para Baixo/genética , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco/fisiologia , Regulação para Cima/genéticaRESUMO
Objective- Macrophages express 3 Akt (protein kinase B) isoforms, Akt1, Akt2, and Akt3, which display isoform-specific functions but may be redundant in terms of Akt survival signaling. We hypothesize that loss of 2 Akt isoforms in macrophages will suppress their ability to survive and modulate the development of atherosclerosis. Approach and Results- To test this hypothesis, we reconstituted male Ldlr-/- mice with double Akt2/Akt3 knockout hematopoietic cells expressing only the Akt1 isoform (Akt1only). There were no differences in body weight and plasma lipid levels between the groups after 8 weeks of the Western diet; however, Akt1onlyâ Ldlr-/- mice developed smaller (57.6% reduction) atherosclerotic lesions with more apoptotic macrophages than control mice transplanted with WT (wild type) cells. Next, male and female Ldlr-/- mice were reconstituted with double Akt1/Akt2 knockout hematopoietic cells expressing the Akt3 isoform (Akt3only). Female and male Akt3onlyâ Ldlr-/- recipients had significantly smaller (61% and 41%, respectively) lesions than the control WTâ Ldlr-/- mice. Loss of 2 Akt isoforms in hematopoietic cells resulted in markedly diminished levels of white blood cells, B cells, and monocytes and compromised viability of monocytes and peritoneal macrophages compared with WT cells. In response to lipopolysaccharides, macrophages with a single Akt isoform expressed low levels of inflammatory cytokines; however, Akt1only macrophages were distinct in expressing high levels of antiapoptotic Il10 compared with WT and Akt3only cells. Conclusions- Loss of 2 Akt isoforms in hematopoietic cells, preserving only a single Akt1 or Akt3 isoform, markedly compromises monocyte and macrophage viability and diminishes early atherosclerosis in Ldlr-/- mice.
Assuntos
Aterosclerose/prevenção & controle , Macrófagos/fisiologia , Monócitos/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptores de LDL/fisiologia , Animais , Sobrevivência Celular , Feminino , Sistema Hematopoético/citologia , Sistema Hematopoético/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/fisiologiaRESUMO
The HDL (high-density lipoprotein) Workshop was established in 2009 as a forum for candid discussions among academic basic scientists, clinical investigators, and industry researchers about the role of HDL in cardiovascular disease. This ninth HDL Workshop was held on May 16 to 17, 2019 in Boston, MA, and included outstanding oral presentations from established and emerging investigators. The Workshop featured 5 sessions with topics that tackled the role of HDL in the vasculature, its structural complexity, its role in health and disease states, and its interaction with the intestinal microbiome. The highlight of the program was awarding the Jack Oram Award to the distinguished professor emeritus G.S. Getz from the University of Chicago. The tenth HDL Workshop will be held on May 2020 in Chicago and will continue the focus on intellectually stimulating presentations by established and emerging investigators on novel roles of HDL in cardiovascular and noncardiovascular health and disease states.
Assuntos
Pesquisa Biomédica/métodos , Vasos Sanguíneos/metabolismo , Cardiologia , Doenças Cardiovasculares/metabolismo , HDL-Colesterol/metabolismo , Hipolipemiantes/uso terapêutico , Sociedades Médicas , Animais , Doenças Cardiovasculares/prevenção & controle , Congressos como Assunto , HumanosRESUMO
PURPOSE OF REVIEW: The purpose of the review is to discuss recent advances in microRNA (miRNA) regulation of lipid metabolism and highlight the importance of miRNA-mediated gene regulation in dyslipidemia and fatty liver disease. This article reviews examples of miRNAs that bridge disparate metabolic pathways in the liver. For example, we highlight miRNAs that are regulated by the sterol-sensing pathway in the liver that in turn regulate cellular or systemic cholesterol, fatty acid, and glucose levels. RECENT FINDINGS: The most widely studied of these miRNAs are miR-33a/b; however, we recently reported that miRNAs in the miR-183/96/182 cluster are also likely regulated by hepatic cholesterol content and mediate the observed glucose-lowering effects of the bile acid sequestrant colesevelam through the sterol-sensing pathway. In addition, several other hepatic and adipose miRNAs have been recently demonstrated to be key regulators of cellular lipid synthesis, storage, and catabolism, as well as systemic lipid metabolism. Moreover, many of these miRNAs are altered in fatty liver disease and dyslipidemia. SUMMARY: miRNAs are not just fine-tuners of lipid metabolism, but critical regulatory factors in lipid homeostasis and health. Loss of these miRNA regulatory modules very likely contributes to the underlying metabolic defects observed in lipid disorders.
Assuntos
Dislipidemias/genética , Metabolismo dos Lipídeos/genética , MicroRNAs/genética , Animais , Dislipidemias/metabolismo , HumanosRESUMO
Transcriptomes of many species are proving to be exquisitely diverse, and many investigators are now using high-throughput sequencing to quantify non-protein-coding RNAs, namely small RNAs (sRNA). Unfortunately, most studies are focused solely on microRNA changes, and many investigators are not analyzing the full compendium of sRNA species present in their large datasets. We provide here a rationale to include all types of sRNAs in sRNA sequencing analyses, which will aid in the discovery of their biological functions and physiological relevance.
Assuntos
Pequeno RNA não Traduzido/genética , Transcriptoma , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Pequeno RNA não Traduzido/classificaçãoRESUMO
Colesevelam is a bile acid sequestrant approved to treat both hyperlipidemia and type 2 diabetes, but the mechanism for its glucose-lowering effects is not fully understood. The aim of this study was to investigate the role of hepatic microRNAs (miRNAs) as regulators of metabolic disease and to investigate the link between the cholesterol and glucose-lowering effects of colesevelam. To quantify the impact of colesevelam treatment in rodent models of diabetes, metabolic studies were performed in Zucker diabetic fatty (ZDF) rats and db/db mice. Colesevelam treatments significantly decreased plasma glucose levels and increased glycolysis in the absence of changes to insulin levels in ZDF rats and db/db mice. High-throughput sequencing and real-time PCR were used to quantify hepatic miRNA and mRNA changes, and the cholesterol-sensitive miR-96/182/183 cluster was found to be significantly increased in livers from ZDF rats treated with colesevelam compared with vehicle controls. Inhibition of miR-182 in vivo attenuated colesevelam-mediated improvements to glycemic control in db/db mice. Hepatic expression of mediator complex subunit 1 (MED1), a nuclear receptor coactivator, was significantly decreased with colesevelam treatments in db/db mice, and MED1 was experimentally validated to be a direct target of miR-96/182/183 in humans and mice. In summary, these results support that colesevelam likely improves glycemic control through hepatic miR-182-5p, a mechanism that directly links cholesterol and glucose metabolism. NEW & NOTEWORTHY Colesevelam lowers systemic glucose levels in Zucker diabetic fatty rats and db/db mice and increases hepatic levels of the sterol response element binding protein 2-responsive microRNA cluster miR-96/182/183. Inhibition of miR-182 in vivo reverses the glucose-lowering effects of colesevelam in db/db mice. Mediator complex subunit 1 (MED1) is a novel, direct target of the miR-96/182/183 cluster in mice and humans.
Assuntos
Ácidos e Sais Biliares/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , MicroRNAs/genética , Animais , Anticolesterolemiantes/farmacologia , Anticolesterolemiantes/uso terapêutico , Cloridrato de Colesevelam/farmacologia , Cloridrato de Colesevelam/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Glicólise , Células HEK293 , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Fígado/efeitos dos fármacos , Masculino , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo , MicroRNAs/metabolismo , Ratos , Ratos ZuckerRESUMO
Lipoproteins, namely high-density lipoproteins (HDL), transport a wide-variety of cargo in addition to cholesterol and lipids. In 2011, HDL and low-density lipoproteins (LDL) were reported to transport microRNAs (miRNA). Since the original discovery, there has been great excitement for this topic and a handful of follow-up publications. Here, we review the current landscape of lipoprotein transport of miRNAs. HDL-miRNAs have been demonstrated to be altered in cardiovascular disease (CVD), including hypercholesterolemia and atherosclerosis. As such, HDL- and LDL-miRNAs may represent a novel class of disease biomarkers. Below, we review HDL-miR-92a and miR-486 levels in myocardial infarction and unstable angina, and HDL-miR-223 and miR-24 levels in coronary artery disease (CAD). Moreover, we address HDL's contribution to the total pool of extracellular miRNAs in plasma and differential distribution of miRNAs across HDL subspecies. Finally, we address current and future challenges for this new field and the barriers to such work. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Assuntos
Lipoproteínas HDL/genética , Lipoproteínas IDL/genética , MicroRNAs/genética , Animais , Doença da Artéria Coronariana/genética , Humanos , Metabolismo dos Lipídeos/genéticaRESUMO
Recent advances in RNA library preparation methods, platform accessibility and cost efficiency have allowed high-throughput RNA sequencing (RNAseq) to replace conventional hybridization microarray platforms as the method of choice for mRNA profiling and transcriptome analyses. RNAseq is a powerful technique to profile both long and short RNA expression, and the depth of information gained from distinct RNAseq methods is striking and facilitates discovery. In addition to expression analysis, distinct RNAseq approaches also allow investigators the ability to assess transcriptional elongation, DNA variance and exogenous RNA content. Here we review the current state of the art in transcriptome sequencing and address epigenetic regulation, quantification of transcription activation, RNAseq output and a diverse set of applications for RNAseq data. We detail how RNAseq can be used to identify allele-specific expression, single-nucleotide polymorphisms and somatic mutations and discuss the benefits and limitations of using RNAseq to monitor DNA characteristics. Moreover, we highlight the power of combining RNA- and DNAseq methods for genomic analysis. In summary, RNAseq provides the opportunity to gain greater insight into transcriptional regulation and output than simply miRNA and mRNA profiling.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , Ativação Transcricional , TranscriptomaRESUMO
MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter activity and mature levels were found to be linked to cellular cholesterol states in hepatoma cells. Moreover, hypercholesterolemia was associated with increased hepatic miR-223 levels in athero-prone mice. miR-223 was found to regulate high-density lipoprotein-cholesterol (HDL-C) uptake, through direct targeting and repression of scavenger receptor BI, and to inhibit cholesterol biosynthesis through the direct repression of sterol enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 and methylsterol monooxygenase 1 in humans. Additionally, miR-223 was found to indirectly promote ATP-binding cassette transporter A1 expression (mRNA and protein) through Sp3, thereby enhancing cellular cholesterol efflux. Finally, genetic ablation of miR-223 in mice resulted in increased HDL-C levels and particle size, as well as increased hepatic and plasma total cholesterol levels. In summary, we identified a critical role for miR-223 in systemic cholesterol regulation by coordinated posttranscriptional control of multiple genes in lipoprotein and cholesterol metabolism.
Assuntos
Colesterol/metabolismo , Homeostase , MicroRNAs/genética , Transcriptoma/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , HDL-Colesterol/metabolismo , Células HEK293 , Humanos , Fígado/metabolismo , Camundongos Knockout , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
The ability of HDL to support macrophage cholesterol efflux is an integral part of its atheroprotective action. Augmenting this ability, especially when HDL cholesterol efflux capacity from macrophages is poor, represents a promising therapeutic strategy. One approach to enhancing macrophage cholesterol efflux is infusing blood with HDL mimics. Previously, we reported the synthesis of a functional mimic of HDL (fmHDL) that consists of a gold nanoparticle template, a phospholipid bilayer, and apo A-I. In this work, we characterize the ability of fmHDL to support the well-established pathways of cellular cholesterol efflux from model cell lines and primary macrophages. fmHDL received cell cholesterol by unmediated (aqueous) and ABCG1- and scavenger receptor class B type I (SR-BI)-mediated diffusion. Furthermore, the fmHDL holoparticle accepted cholesterol and phospholipid by the ABCA1 pathway. These results demonstrate that fmHDL supports all the cholesterol efflux pathways available to native HDL and thus, represents a promising infusible therapeutic for enhancing macrophage cholesterol efflux. fmHDL accepts cholesterol from cells by all known pathways of cholesterol efflux: unmediated, ABCG1- and SR-BI-mediated diffusion, and through ABCA1.
Assuntos
Apolipoproteína A-I/farmacologia , Cardiotônicos/farmacologia , Colesterol/metabolismo , Nanopartículas/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Transporte Biológico , Linhagem Celular , Doença da Artéria Coronariana/tratamento farmacológico , Cricetinae , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Ouro/metabolismo , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Mimetismo Molecular , Fosfolipídeos/farmacologia , Receptores Depuradores Classe B/metabolismoRESUMO
BACKGROUND: Although advances in sequencing technologies have popularized the use of microRNA (miRNA) sequencing (miRNA-seq) for the quantification of miRNA expression, questions remain concerning the optimal methodologies for analysis and utilization of the data. The construction of a miRNA sequencing library selects RNA by length rather than type. However, as we have previously described, miRNAs represent only a subset of the species obtained by size selection. Consequently, the libraries obtained for miRNA sequencing also contain a variety of additional species of small RNAs. This study looks at the prevalence of these other species obtained from bone marrow aspirate specimens and explores the predictive value of these small RNAs in the determination of response to therapy in myelodysplastic syndromes (MDS). METHODS: Paired pre and post treatment bone marrow aspirate specimens were obtained from patients with MDS who were treated with either azacytidine or decitabine (24 pre-treatment specimens, 23 post-treatment specimens) with 22 additional non-MDS control specimens. Total RNA was extracted from these specimens and submitted for next generation sequencing after an additional size exclusion step to enrich for small RNAs. The species of small RNAs were enumerated, single nucleotide variants (SNVs) identified, and finally the differential expression of tRNA-derived species (tDRs) in the specimens correlated with diseasestatus and response to therapy. RESULTS: Using miRNA sequencing data generated from bone marrow aspirate samples of patients with known MDS (N = 47) and controls (N = 23), we demonstrated that transfer RNA (tRNA) fragments (specifically tRNA halves, tRHs) are one of the most common species of small RNA isolated from size selection. Using tRNA expression values extracted from miRNA sequencing data, we identified six tRNA fragments that are differentially expressed between MDS and normal samples. Using the elastic net method, we identified four tRNAs-derived small RNAs (tDRs) that together can explain 67 % of the variation in treatment response for MDS patients. Similar analysis of specifically mitochondrial tDRs (mt-tDRs) identified 13 mt-tDRs which distinguished disease status in the samples and a single mt-tDR which predited response. Finally, 14 SNVs within the tDRs were found in at least 20 % of the MDS samples and were not observed in any of the control specimens. DISCUSSION: This study highlights the prevalence of tDRs in RNA-seq studies focused on small RNAs. The potential etiologies of these species, both technical and biologic, are discussed as well as important challenges in the interpretation of tDR data. CONCLUSIONS: Our analysis results suggest that tRNA fragments can be accurately detected through miRNA sequencing data and that the expression of these species may be useful in the diagnosis of MDS and the prediction of response to therapy.