Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 54(10): 2169-2171, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644549

RESUMO

For new principal investigators, the first years are key to getting a laboratory off the ground and running. COVID-19 has changed the world, bringing on unforeseen difficulties and challenges at every level. We asked these investigators to share their experiences in navigating the unique environment since the start of the pandemic-what has changed in their vision for their laboratory, how they have adapted, and what advice they can share with others in a similar situation.


Assuntos
COVID-19/epidemiologia , Laboratórios , Adaptação Psicológica , Pesquisa Biomédica/tendências , COVID-19/psicologia , Comunicação , Humanos , Laboratórios/tendências , Pessoal de Laboratório/psicologia , Pessoal de Laboratório/tendências , SARS-CoV-2
2.
Cell ; 159(2): 318-32, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25303528

RESUMO

Increased adipose tissue lipogenesis is associated with enhanced insulin sensitivity. Mice overexpressing the Glut4 glucose transporter in adipocytes have elevated lipogenesis and increased glucose tolerance despite being obese with elevated circulating fatty acids. Lipidomic analysis of adipose tissue revealed the existence of branched fatty acid esters of hydroxy fatty acids (FAHFAs) that were elevated 16- to 18-fold in these mice. FAHFA isomers differ by the branched ester position on the hydroxy fatty acid (e.g., palmitic-acid-9-hydroxy-stearic-acid, 9-PAHSA). PAHSAs are synthesized in vivo and regulated by fasting and high-fat feeding. PAHSA levels correlate highly with insulin sensitivity and are reduced in adipose tissue and serum of insulin-resistant humans. PAHSA administration in mice lowers ambient glycemia and improves glucose tolerance while stimulating GLP-1 and insulin secretion. PAHSAs also reduce adipose tissue inflammation. In adipocytes, PAHSAs signal through GPR120 to enhance insulin-stimulated glucose uptake. Thus, FAHFAs are endogenous lipids with the potential to treat type 2 diabetes.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Adulto , Animais , Diabetes Mellitus Tipo 2/dietoterapia , Dieta , Ésteres/administração & dosagem , Ésteres/análise , Ácidos Graxos/administração & dosagem , Ácidos Graxos/análise , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Humanos , Inflamação/dietoterapia , Insulina/metabolismo , Resistência à Insulina , Lipogênese , Masculino , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptores Acoplados a Proteínas G/metabolismo
3.
PLoS Biol ; 21(1): e3001973, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716309

RESUMO

Transcranial electrical stimulation (tES) is one of the oldest and yet least understood forms of brain stimulation. The idea that a weak electrical stimulus, applied outside the head, can meaningfully affect neural activity is often regarded as mysterious. Here, we argue that the direct effects of tES are not so mysterious: Extensive data from a wide range of model systems shows it has appreciable effects on the activity of individual neurons. Instead, the real mysteries are how tES interacts with the brain's own activity and how these dynamics can be controlled to produce desirable therapeutic effects. These are challenging problems, akin to repairing a complex machine while it is running, but they are not unique to tES or even neuroscience. We suggest that models of coupled oscillators, a common tool for studying interactions in other fields, may provide valuable insights. By combining these tools with our growing, interdisciplinary knowledge of brain dynamics, we are now in a good position to make progress in this area and meet the high demand for effective neuromodulation in neuroscience and psychiatry.


Assuntos
Neurociências , Estimulação Transcraniana por Corrente Contínua , Encéfalo/fisiologia , Eletricidade , Neurônios/fisiologia
4.
PLoS Biol ; 20(5): e3001650, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35613140

RESUMO

Transcranial alternating current stimulation (tACS) is a popular method for modulating brain activity noninvasively. In particular, tACS is often used as a targeted intervention that enhances a neural oscillation at a specific frequency to affect a particular behavior. However, these interventions often yield highly variable results. Here, we provide a potential explanation for this variability: tACS competes with the brain's ongoing oscillations. Using neural recordings from alert nonhuman primates, we find that when neural firing is independent of ongoing brain oscillations, tACS readily entrains spiking activity, but when neurons are strongly entrained to ongoing oscillations, tACS often causes a decrease in entrainment instead. Consequently, tACS can yield categorically different results on neural activity, even when the stimulation protocol is fixed. Mathematical analysis suggests that this competition is likely to occur under many experimental conditions. Attempting to impose an external rhythm on the brain may therefore often yield precisely the opposite effect.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Animais , Encéfalo/fisiologia , Neurônios/fisiologia , Primatas , Técnicas Estereotáxicas , Estimulação Transcraniana por Corrente Contínua/métodos
5.
Am J Physiol Endocrinol Metab ; 326(5): E681-E695, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597829

RESUMO

Hypothalamic proopiomelanocortin (POMC) neurons are sensors of signals that reflect the energy stored in the body. Inducing mild stress in proopiomelanocortin neurons protects them from the damage promoted by the consumption of a high-fat diet, mitigating the development of obesity; however, the cellular mechanisms behind these effects are unknown. Here, we induced mild stress in a proopiomelanocortin neuron cell line by inhibiting Crif1. In proopiomelanocortin neurons exposed to high levels of palmitate, the partial inhibition of Crif1 reverted the defects in mitochondrial respiration and ATP production; this was accompanied by improved mitochondrial fusion/fission cycling. Furthermore, the partial inhibition of Crif1 resulted in increased reactive oxygen species production, increased fatty acid oxidation, and reduced dependency on glucose for mitochondrial respiration. These changes were dependent on the activity of CPT-1. Thus, we identified a CPT-1-dependent metabolic shift toward greater utilization of fatty acids as substrates for respiration as the mechanism behind the protective effect of mild stress against palmitate-induced damage of proopiomelanocortin neurons.NEW & NOTEWORTHY Saturated fats can damage hypothalamic neurons resulting in positive energy balance, and this is mitigated by mild cellular stress; however, the mechanisms behind this protective effect are unknown. Using a proopiomelanocortin cell line, we show that under exposure to a high concentration of palmitate, the partial inhibition of the mitochondrial protein Crif1 results in protection due to a metabolic shift warranted by the increased expression and activity of the mitochondrial fatty acid transporter CPT-1.


Assuntos
Carnitina O-Palmitoiltransferase , Proteínas de Ciclo Celular , Ácidos Graxos , Mitocôndrias , Animais , Camundongos , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Linhagem Celular , Ácidos Graxos/metabolismo , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo
6.
Acta Neuropathol ; 147(1): 64, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556574

RESUMO

Prader-Willi Syndrome (PWS) is a rare neurodevelopmental disorder of genetic etiology, characterized by paternal deletion of genes located at chromosome 15 in 70% of cases. Two distinct genetic subtypes of PWS deletions are characterized, where type I (PWS T1) carries four extra haploinsufficient genes compared to type II (PWS T2). PWS T1 individuals display more pronounced physiological and cognitive abnormalities than PWS T2, yet the exact neuropathological mechanisms behind these differences remain unclear. Our study employed postmortem hypothalamic tissues from PWS T1 and T2 individuals, conducting transcriptomic analyses and cell-specific protein profiling in white matter, neurons, and glial cells to unravel the cellular and molecular basis of phenotypic severity in PWS sub-genotypes. In PWS T1, key pathways for cell structure, integrity, and neuronal communication are notably diminished, while glymphatic system activity is heightened compared to PWS T2. The microglial defect in PWS T1 appears to stem from gene haploinsufficiency, as global and myeloid-specific Cyfip1 haploinsufficiency in murine models demonstrated. Our findings emphasize microglial phagolysosome dysfunction and altered neural communication as crucial contributors to the severity of PWS T1's phenotype.


Assuntos
Síndrome de Prader-Willi , Humanos , Camundongos , Animais , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/psicologia , Microglia , Proteínas de Transporte/genética , Fenótipo , Fagossomos , Proteínas Adaptadoras de Transdução de Sinal/genética
7.
Planta Med ; 90(2): 111-125, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37935353

RESUMO

Seborrheic dermatitis is a chronic inflammatory disease caused by Malassezia yeast species that affects the regions of the body where the sebaceous glands are present. The combined use of different essential oils (EOs) can increase their spectrum of action. Thus, the present study aimed to evaluate the action of EOs alone and in combination with each other on M. furfur, in planktonic and biofilm form, and their anti-inflammatory and mutagenic potential, in addition to the effects on the viability of cells lines. Of the 40 evaluated EOs, 22 showed activity against M. furfur at 0.5 - 2.0 mg/mL concentrations. Among the most active species, a blend of essential oils (BEOs) composed of Cymbopogon martini (Roxb.) Will. Watson (MIC = 0.5 mg/mL) and Mentha × piperita L. (MIC = 1.0 mg/mL) was selected, which showed a synergistic effect against yeast when evaluated through the checkerboard assay. The fungicidal activity was maintained by the addition of anti-inflammatory oil from Varronia curassavica Jacq. to BEOs. The BEOs also showed activity in the inhibition of biofilm formation and in the eradication of the biofilm formed by M. furfur, being superior to the action of fluconazole. Furthermore, it did not show mutagenic potential and did not interfere with the cell viability of both evaluated cell lines (HaCaT and BMDMs). TNF-α levels were reduced only by C. martini; however, this property was maintained when evaluating BEOs. BEOs had no effect on IL-8 levels. Thus, the BEOs may be indicated for alternative treatments against seborrheic dermatitis.


Assuntos
Dermatite Seborreica , Malassezia , Óleos Voláteis , Antifúngicos/farmacologia , Óleos Voláteis/farmacologia , Dermatite Seborreica/tratamento farmacológico , Anti-Inflamatórios/farmacologia
8.
Dis Esophagus ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670807

RESUMO

Reasons for structural and outcome differences in esophageal cancer surgery in Western Europe remain unclear. This questionnaire study aimed to identify differences in the organization of esophageal cancer surgical care in Western Europe. A cross-sectional international questionnaire study was conducted among upper gastrointestinal (GI) surgeons from Western Europe. One surgeon per country was selected based on scientific output and active membership in the European Society for Diseases of the Esophagus or (inter)national upper GI committee. The questionnaire consisted of 51 structured questions on the structural organization of esophageal cancer surgery, surgical training, and clinical audit processes. Between October 2021 and October 2022, 16 surgeons from 16 European countries participated in this study. In 5 countries (31%), a volume threshold was present ranging from 10 to 26 annual esophagectomies, in 7 (44%) care was centralized in designated centers, and in 4 (25%) no centralizing regulations were present. The number of centers performing esophageal cancer surgery per country differed from 4 to 400, representing 0.5-4.9 centers per million inhabitants. In 4 countries (25%), esophageal cancer surgery was part of general surgical training and 8 (50%) reported the availability of upper GI surgery fellowships. A national audit for upper GI surgery was present in 8 (50%) countries. If available, all countries use the audit to monitor the quality of care. Substantial differences exist in the organization and centralization of esophageal cancer surgical care in Western Europe. The exchange of experience in the organizational aspects of care could further improve the results of esophageal cancer surgical care in Europe.

9.
Ecotoxicol Environ Saf ; 275: 116254, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547729

RESUMO

Heavy metal exposure leads to multiple system dysfunctions. The mechanisms are likely multifactorial and involve inflammation and oxidative stress. The aim of this study was to evaluate markers and risk factors for atherosclerosis in the LDL receptor knockout mouse model chronically exposed to inorganic mercury (Hg) in the drinking water. Results revealed that Hg exposed mice present increased plasma levels of cholesterol, without alterations in glucose. As a major source and target of oxidants, we evaluated mitochondrial function. We found that liver mitochondria from Hg treated mice show worse respiratory control, lower oxidative phosphorylation efficiency and increased H2O2 release. In addition, Hg induced mitochondrial membrane permeability transition. Erythrocytes from Hg treated mice showed a 50% reduction in their ability to take up oxygen, lower levels of reduced glutathione (GSH) and of antioxidant enzymes (SOD, catalase and GPx). The Hg treatment disturbed immune system cells counting and function. While lymphocytes were reduced, monocytes, eosinophils and neutrophils were increased. Peritoneal macrophages from Hg treated mice showed increased phagocytic activity. Hg exposed mice tissues present metal impregnation and parenchymal architecture alterations. In agreement, increased systemic markers of liver and kidney dysfunction were observed. Plasma, liver and kidney oxidative damage indicators (MDA and carbonyl) were increased while GSH and thiol groups were diminished by Hg exposure. Importantly, atherosclerotic lesion size in the aorta root of Hg exposed mice were larger than in controls. In conclusion, in vivo chronic exposure to Hg worsens the hypercholesterolemia, impairs mitochondrial bioenergetics and redox function, alters immune cells profile and function, causes several tissues oxidative damage and accelerates atherosclerosis development.


Assuntos
Aterosclerose , Hipercolesterolemia , Mercúrio , Animais , Camundongos , Aterosclerose/induzido quimicamente , Peróxido de Hidrogênio , Nefropatias , Mercúrio/toxicidade , Camundongos Knockout , Estresse Oxidativo/fisiologia , Receptores de LDL/genética
10.
PLoS Pathog ; 17(5): e1009597, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33989349

RESUMO

Macrophages metabolic reprogramming in response to microbial insults is a major determinant of pathogen growth or containment. Here, we reveal a distinct mechanism by which stimulator of interferon genes (STING), a cytosolic sensor that regulates innate immune responses, contributes to an inflammatory M1-like macrophage profile upon Brucella abortus infection. This metabolic reprogramming is induced by STING-dependent stabilization of hypoxia-inducible factor-1 alpha (HIF-1α), a global regulator of cellular metabolism and innate immune cell functions. HIF-1α stabilization reduces oxidative phosphorylation and increases glycolysis during infection with B. abortus and, likewise, enhances nitric oxide production, inflammasome activation and IL-1ß release in infected macrophages. Furthermore, the induction of this inflammatory profile participates in the control of bacterial replication since absence of HIF-1α renders mice more susceptible to B. abortus infection. Mechanistically, activation of STING by B. abortus infection drives the production of mitochondrial reactive oxygen species (mROS) that ultimately influences HIF-1α stabilization. Moreover, STING increases the intracellular succinate concentration in infected macrophages, and succinate pretreatment induces HIF-1α stabilization and IL-1ß release independently of its cognate receptor GPR91. Collectively, these data demonstrate a pivotal mechanism in the immunometabolic regulation of macrophages during B. abortus infection that is orchestrated by STING via HIF-1α pathway and highlight the metabolic reprogramming of macrophages as a potential treatment strategy for bacterial infections.


Assuntos
Brucella abortus/imunologia , Brucelose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Animais , Brucelose/imunologia , Brucelose/microbiologia , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
11.
Mol Genet Metab ; 138(4): 107552, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36889041

RESUMO

BACKGROUND AND AIMS: Low-density lipoprotein (LDL) plasma concentration decline is a biomarker for acute inflammatory diseases, including coronavirus disease-2019 (COVID-19). Phenotypic changes in LDL during COVID-19 may be equally related to adverse clinical outcomes. METHODS: Individuals hospitalized due to COVID-19 (n = 40) were enrolled. Blood samples were collected on days 0, 2, 4, 6, and 30 (D0, D2, D4, D6, and D30). Oxidized LDL (ox-LDL), and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity were measured. In a consecutive series of cases (n = 13), LDL was isolated by gradient ultracentrifugation from D0 and D6 and was quantified by lipidomic analysis. Association between clinical outcomes and LDL phenotypic changes was investigated. RESULTS: In the first 30 days, 42.5% of participants died due to Covid-19. The serum ox-LDL increased from D0 to D6 (p < 0.005) and decreased at D30. Moreover, individuals who had an ox-LDL increase from D0 to D6 to over the 90th percentile died. The plasma Lp-PLA2 activity also increased progressively from D0 to D30 (p < 0.005), and the change from D0 to D6 in Lp-PLA2 and ox-LDL were positively correlated (r = 0.65, p < 0.0001). An exploratory untargeted lipidomic analysis uncovered 308 individual lipids in isolated LDL particles. Paired-test analysis from D0 and D6 revealed higher concentrations of 32 lipid species during disease progression, mainly represented by lysophosphatidyl choline and phosphatidylinositol. In addition, 69 lipid species were exclusively modulated in the LDL particles from non-survivors as compared to survivors. CONCLUSIONS: Phenotypic changes in LDL particles are associated with disease progression and adverse clinical outcomes in COVID-19 patients and could serve as a potential prognostic biomarker.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , COVID-19 , Humanos , Lipoproteínas LDL , Biomarcadores , Lisofosfatidilcolinas
12.
Bioscience ; 73(7): 494-512, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37560322

RESUMO

Managing marine nonindigenous species (mNIS) is challenging, because marine environments are highly connected, allowing the dispersal of species across large spatial scales, including geopolitical borders. Cross-border inconsistencies in biosecurity management can promote the spread of mNIS across geopolitical borders, and incursions often go unnoticed or unreported. Collaborative surveillance programs can enhance the early detection of mNIS, when response may still be possible, and can foster capacity building around a common threat. Regional or international databases curated for mNIS can inform local monitoring programs and can foster real-time information exchange on mNIS of concern. When combined, local species reference libraries, publicly available mNIS databases, and predictive modeling can facilitate the development of biosecurity programs in regions lacking baseline data. Biosecurity programs should be practical, feasible, cost-effective, mainly focused on prevention and early detection, and be built on the collaboration and coordination of government, nongovernment organizations, stakeholders, and local citizens for a rapid response.

13.
PLoS Biol ; 18(10): e3000834, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33001971

RESUMO

Transcranial alternating current stimulation (tACS) modulates brain activity by passing electrical current through electrodes that are attached to the scalp. Because it is safe and noninvasive, tACS holds great promise as a tool for basic research and clinical treatment. However, little is known about how tACS ultimately influences neural activity. One hypothesis is that tACS affects neural responses directly, by producing electrical fields that interact with the brain's endogenous electrical activity. By controlling the shape and location of these electric fields, one could target brain regions associated with particular behaviors or symptoms. However, an alternative hypothesis is that tACS affects neural activity indirectly, via peripheral sensory afferents. In particular, it has often been hypothesized that tACS acts on sensory fibers in the skin, which in turn provide rhythmic input to central neurons. In this case, there would be little possibility of targeted brain stimulation, as the regions modulated by tACS would depend entirely on the somatosensory pathways originating in the skin around the stimulating electrodes. Here, we directly test these competing hypotheses by recording single-unit activity in the hippocampus and visual cortex of alert monkeys receiving tACS. We find that tACS entrains neuronal activity in both regions, so that cells fire synchronously with the stimulation. Blocking somatosensory input with a topical anesthetic does not significantly alter these neural entrainment effects. These data are therefore consistent with the direct stimulation hypothesis and suggest that peripheral somatosensory stimulation is not required for tACS to entrain neurons.


Assuntos
Córtex Somatossensorial/fisiologia , Estimulação Transcraniana por Corrente Contínua , Anestesia , Animais , Combinação Lidocaína e Prilocaína/farmacologia , Macaca mulatta , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Sensação/efeitos dos fármacos , Sensação/fisiologia , Córtex Somatossensorial/efeitos dos fármacos
14.
Eur Arch Psychiatry Clin Neurosci ; 273(8): 1649-1664, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37039888

RESUMO

Schizophrenia is a severe psychiatric disorder of neurodevelopmental origin that affects around 1% of the world's population. Proteomic studies and other approaches have provided evidence of compromised cellular processes in the disorder, including mitochondrial function. Most of the studies so far have been conducted on postmortem brain tissue from patients, and therefore, do not allow the evaluation of the neurodevelopmental aspect of the disorder. To circumvent that, we studied the mitochondrial and nuclear proteomes of neural stem cells (NSCs) and neurons derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients versus healthy controls to assess possible alterations related to energy metabolism and mitochondrial function during neurodevelopment in the disorder. Our results revealed differentially expressed proteins in pathways related to mitochondrial function, cell cycle control, DNA repair and neuritogenesis and their possible implication in key process of neurodevelopment, such as neuronal differentiation and axonal guidance signaling. Moreover, functional analysis of NSCs revealed alterations in mitochondrial oxygen consumption in schizophrenia-derived cells and a tendency of higher levels of intracellular reactive oxygen species (ROS). Hence, this study shows evidence that alterations in important cellular processes are present during neurodevelopment and could be involved with the establishment of schizophrenia, as well as the phenotypic traits observed in adult patients. Neural stem cells (NSCs) and neurons were derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients and controls. Proteomic analyses were performed on the enriched mitochondrial and nuclear fractions of NSCs and neurons. Whole-cell proteomic analysis was also performed in neurons. Our results revealed alteration in proteins related to mitochondrial function, cell cycle control, among others. We also performed energy pathway analysis and reactive oxygen species (ROS) analysis of NSCs, which revealed alterations in mitochondrial oxygen consumption and a tendency of higher levels of intracellular ROS in schizophrenia-derived cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Adulto , Humanos , Esquizofrenia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Pontos de Checagem do Ciclo Celular , Mitocôndrias/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(49): 31309-31318, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33214151

RESUMO

Adipose tissue (AT) inflammation contributes to systemic insulin resistance. In obesity and type 2 diabetes (T2D), retinol binding protein 4 (RBP4), the major retinol carrier in serum, is elevated in AT and has proinflammatory effects which are mediated partially through Toll-like receptor 4 (TLR4). We now show that RBP4 primes the NLRP3 inflammasome for interleukin-1ß (IL1ß) release, in a glucose-dependent manner, through the TLR4/MD2 receptor complex and TLR2. This impairs insulin signaling in adipocytes. IL1ß is elevated in perigonadal white AT (PGWAT) of chow-fed RBP4-overexpressing mice and in serum and PGWAT of high-fat diet-fed RBP4-overexpressing mice vs. wild-type mice. Holo- or apo-RBP4 injection in wild-type mice causes insulin resistance and elevates PGWAT inflammatory markers, including IL1ß. TLR4 inhibition in RBP4-overexpressing mice reduces PGWAT inflammation, including IL1ß levels and improves insulin sensitivity. Thus, the proinflammatory effects of RBP4 require NLRP3-inflammasome priming. These studies may provide approaches to reduce AT inflammation and insulin resistance in obesity and diabetes.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo Branco/patologia , Animais , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Humanos , Inflamação/patologia , Resistência à Insulina , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Fator de Necrose Tumoral alfa/metabolismo
16.
J Neurochem ; 163(2): 113-132, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35880385

RESUMO

COVID-19 causes more than million deaths worldwide. Although much is understood about the immunopathogenesis of the lung disease, a lot remains to be known on the neurological impact of COVID-19. Here, we evaluated immunometabolic changes using astrocytes in vitro and dissected brain areas of SARS-CoV-2 infected Syrian hamsters. We show that SARS-CoV-2 alters proteins of carbon metabolism, glycolysis, and synaptic transmission, many of which are altered in neurological diseases. Real-time respirometry evidenced hyperactivation of glycolysis, further confirmed by metabolomics, with intense consumption of glucose, pyruvate, glutamine, and alpha ketoglutarate. Consistent with glutamine reduction, the blockade of glutaminolysis impaired viral replication and inflammatory response in vitro. SARS-CoV-2 was detected in vivo in hippocampus, cortex, and olfactory bulb of intranasally infected animals. Our data evidence an imbalance in important metabolic molecules and neurotransmitters in infected astrocytes. We suggest this may correlate with the neurological impairment observed during COVID-19, as memory loss, confusion, and cognitive impairment.


Assuntos
COVID-19 , Animais , Astrócitos , Carbono , Cricetinae , Modelos Animais de Doenças , Glucose , Glutamina , Ácidos Cetoglutáricos , Mesocricetus , Piruvatos , SARS-CoV-2
17.
Phys Rev Lett ; 129(22): 221601, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36493435

RESUMO

We consider correlation functions of single trace operators approaching the cusps of null polygons in a double-scaling limit where so-called cusp times t_{i}^{2}=g^{2}logx_{i-1,i}^{2}logx_{i,i+1}^{2} are held fixed and the 't Hooft coupling is small. With the help of stampedes, symbols, and educated guesses, we find that any such correlator can be uniquely fixed through a set of coupled lattice PDEs of Toda type with several intriguing novel features. These results hold for most conformal gauge theories with a large number of colors, including planar N=4 SYM.


Assuntos
Física
18.
Proc Natl Acad Sci U S A ; 116(12): 5747-5755, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833389

RESUMO

Spike timing is thought to play a critical role in neural computation and communication. Methods for adjusting spike timing are therefore of great interest to researchers and clinicians alike. Transcranial electrical stimulation (tES) is a noninvasive technique that uses weak electric fields to manipulate brain activity. Early results have suggested that this technique can improve subjects' behavioral performance on a wide range of tasks and ameliorate some clinical conditions. Nevertheless, considerable skepticism remains about its efficacy, especially because the electric fields reaching the brain during tES are small, whereas the likelihood of indirect effects is large. Our understanding of its effects in humans is largely based on extrapolations from simple model systems and indirect measures of neural activity. As a result, fundamental questions remain about whether and how tES can influence neuronal activity in the human brain. Here, we demonstrate that tES, as typically applied to humans, affects the firing patterns of individual neurons in alert nonhuman primates, which are the best available animal model for the human brain. Specifically, tES consistently influences the timing, but not the rate, of spiking activity within the targeted brain region. Such effects are frequency- and location-specific and can reach deep brain structures; control experiments show that they cannot be explained by sensory stimulation or other indirect influences. These data thus provide a strong mechanistic rationale for the use of tES in humans and will help guide the development of future tES applications.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Animais , Encéfalo/fisiologia , Estimulação Elétrica/métodos , Eletroencefalografia , Macaca mulatta/fisiologia , Masculino , Primatas
19.
Sensors (Basel) ; 22(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36081137

RESUMO

A new theory suggests that flammable gases generated by heated vegetation, in particular the volatile organic compounds (VOC) common to Mediterranean plants, may, under certain topographic and wind conditions, accumulate in locations where, after the arrival of the ignition source, they rapidly burst into flames as explosions. Hence, there is a need for the development of a system that can monitor the development of these compounds. In this work, a sensor's array is proposed as a method for monitoring the amount of eucalyptol and α-pinene, the major VOC compounds of the Eucalyptus and Pine trees. The detection of the target compounds was assessed using the impedance spectroscopy response of thin films. Combinations of layers of polyelectrolytes, such as poly(allylamine hydrochloride) (PAH), polyethyleneimine (PEI), poly(sodium 4-sytrenesulfonate) (PSS) graphene oxide (GO), and non/functionalized multiwall nanotubes (MWCNT-COOH or MWCNT), namely, PAH/GO, PEI/PSS, PEI/GO, PAH/MWCNT, PAH/MWCNT-COOH, films, and TiO2 and ZnO sputtered films, were deposited onto ceramic supports coated with gold interdigitated electrodes. The results showed that concentrations of the target VOCs, within the range of 68 to 999 ppmv, can be easily distinguished by analyzing the impedance spectra, particularly in the case of the ZnO- and PAH/GO-film-based sensors, which showed the best results in the detection of the target compounds. Through principal component analysis (PCA), the best set of features attained for the ZnO and PAH/GO based sensor devices revealed a linear trend of the PCA's first principal component with the concentration within the range 109 and 807 ppmv. Thus, the values of sensitivity to eucalyptol and α-pinene concentrations, which were (2.2 ± 0.3) × 10-4 and (5.0 ± 0.7) × 10-5 per decade, respectively, as well as resolutions of 118 and 136 ppbv, respectively, were identified.


Assuntos
Compostos Orgânicos Voláteis , Incêndios Florestais , Óxido de Zinco , Eletrodos , Eucaliptol , Polietilenoimina/química , Compostos Orgânicos Voláteis/análise
20.
Phys Rev Lett ; 127(8): 081601, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34477444

RESUMO

We use the S-matrix bootstrap to carve out the space of unitary, crossing symmetric and supersymmetric graviton scattering amplitudes in ten dimensions. We focus on the leading Wilson coefficient α controlling the leading correction to maximal supergravity. The negative region α<0 is excluded by a simple dual argument based on linearized unitarity (the desert). A whole semi-infinite region α≳0.14 is allowed by the primal bootstrap (the garden). A finite intermediate region is excluded by nonperturbative unitarity (the swamp). Remarkably, string theory seems to cover all (or at least almost all) the garden from very large positive α-at weak coupling-to the swamp boundary-at strong coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA