Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mem Inst Oswaldo Cruz ; 118: e220252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36946853

RESUMO

Neurodegenerative diseases (NDs) are increasingly common, especially in populations with higher life expectancies. They are associated mainly with protein metabolism and structure changes, leading to neuronal cell death. Viral infections affect these cellular processes and may be involved in the etiology of several neurological illnesses, particularly NDs. Enteroviruses (EVs) frequently infect the central nervous system (CNS), causing neurological disease. Inflammation, disruption of the host autophagy machinery, and deregulation and accumulation/misfolding of proteins are the main alterations observed after infection by an EV. In this perspective, we discuss the most recent findings on the subject, examining the possible role of EVs in the development of NDs, and shedding light on the putative role played by these viruses in developing NDs.


Assuntos
Infecções por Enterovirus , Enterovirus , Doenças Neurodegenerativas , Humanos , Infecções por Enterovirus/complicações , Enterovirus/metabolismo , Antígenos Virais , Inflamação
2.
Molecules ; 27(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432036

RESUMO

Prion Diseases or Transmissible Spongiform Encephalopathies are neurodegenerative conditions associated with a long incubation period and progressive clinical evolution, leading to death. Their pathogenesis is characterized by conformational changes of the cellular prion protein-PrPC-in its infectious isoform-PrPSc-which can form polymeric aggregates that precipitate in brain tissues. Currently, there are no effective treatments for these diseases. The 2,5-diamino-1,4-benzoquinone structure is associated with an anti-prion profile and, considering the biodynamic properties associated with 4-quinolones, in this work, 6-amino-4-quinolones derivatives and their respective benzoquinone dimeric hybrids were synthesized and had their bioactive profile evaluated through their ability to prevent prion conversion. Two hybrids, namely, 2,5-dichloro-3,6-bis((3-carboxy-1-pentyl-4-quinolone-6-yl)amino)-1,4-benzoquinone (8e) and 2,5-dichloro-3,6-bis((1-benzyl-3-carboxy-4-quinolone-6-yl)amino)-1,4-benzoquinone (8f), stood out for their prion conversion inhibition ability, affecting the fibrillation process in both the kinetics-with a shortening of the lag phase-and thermodynamics and their ability to inhibit the formation of protein aggregates without significant cytotoxicity at ten micromolar.


Assuntos
Doenças Priônicas , Príons , Quinolonas , Humanos , Proteínas Priônicas , Príons/química , Doenças Priônicas/metabolismo , Polímeros , Translocação Genética , Benzoquinonas/farmacologia
3.
Mem. Inst. Oswaldo Cruz ; 118: e220252, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1430847

RESUMO

Neurodegenerative diseases (NDs) are increasingly common, especially in populations with higher life expectancies. They are associated mainly with protein metabolism and structure changes, leading to neuronal cell death. Viral infections affect these cellular processes and may be involved in the etiology of several neurological illnesses, particularly NDs. Enteroviruses (EVs) frequently infect the central nervous system (CNS), causing neurological disease. Inflammation, disruption of the host autophagy machinery, and deregulation and accumulation/misfolding of proteins are the main alterations observed after infection by an EV. In this perspective, we discuss the most recent findings on the subject, examining the possible role of EVs in the development of NDs, and shedding light on the putative role played by these viruses in developing NDs.

4.
J Chromatogr A ; 1379: 1-8, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25576041

RESUMO

Prion diseases are characterized by protein aggregation and neurodegeneration. Conversion of the native prion protein (PrP(C)) into the abnormal scrapie PrP isoform (PrP(Sc)), which undergoes aggregation and can eventually form amyloid fibrils, is a critical step leading to the characteristic path morphological hallmark of these diseases. However, the mechanism of conversion remains unclear. It is known that ligands can act as cofactors or inhibitors in the conversion mechanism of PrP(C) into PrP(Sc). Within this context, herein, we describe the immobilization of PrP(C) onto the surface of magnetic beads and the morphological characterization of PrP(C)-coated beads by fluorescence confocal microscopy. PrP(C)-coated magnetic beads were used to identify ligands from a mixture of compounds, which were monitored by UHPLC-ESI-MS/MS. This affinity-based method allowed the isolation of the anti-prion compound quinacrine, an inhibitor of PrP aggregation. The results indicate that this approach can be applied to not only "fish" for anti-prion compounds from complex matrixes, but also to screening for and identify possible cellular cofactors involved in the deflagration of prion diseases.


Assuntos
Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Proteínas PrPSc/metabolismo , Animais , Cromatografia Líquida , Ligantes , Fenômenos Magnéticos , Microscopia de Fluorescência , Proteínas PrPSc/biossíntese , Proteínas PrPSc/química , Isoformas de Proteínas , Quinacrina/isolamento & purificação , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA