Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Parasitol ; 173: 1-8, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27956087

RESUMO

Inorganic phosphate (Pi) is an essential nutrient for all organisms because it is required for a variety of biochemical processes, such as signal transduction and the synthesis of phosphate-containing biomolecules. Assays of 32Pi uptake performed in the absence or in the presence of Na+ indicated the existence of a Na+-dependent and a Na+-independent Pi transporter in Phytomonas serpens. Phylogenetic analysis of two hypothetical protein sequences of Phytomonas (EM1) showed similarities to the high-affinity Pi transporters of Saccharomyces cerevisiae: Pho84, a Na+-independent Pi transporter, and Pho89, a Na+-dependent Pi transporter. Plasma membrane depolarization by FCCP, an H+ ionophore, strongly decreased Pi uptake via both Na+-independent and Na+-dependent carriers, indicating that a membrane potential is essential for Pi influx. In addition, the furosemide-sensitive Na+-pump activity in the cells grown in low Pi conditions was found to be higher than the activity detected in the plasma membrane of cells cultivated at high Pi concentration, suggesting that the up-regulation of the Na+-ATPase pump could be related to the increase of Pi uptake by the Pho89p Na+:Pi symporter. Here we characterize for the first time two inorganic phosphate transporters powered by Na+ and H+ gradients and activated by low Pi availability in the phytopathogen P. serpens.


Assuntos
Fosfatos/metabolismo , Simportadores de Próton-Fosfato/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Trypanosomatina/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Transporte de Íons , Cinética , Potenciais da Membrana , Simportadores de Próton-Fosfato/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Sódio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/genética , Trypanosomatina/genética , Regulação para Cima
2.
Exp Parasitol ; 131(1): 63-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22449511

RESUMO

Free Cu(2+) is toxic due to the capacity of free copper ions to catalyze the production of reactive oxygen species (ROS) that can modify the structure and/or function of biomolecules. In addition, non-specific binding to enzymes, which modifies their catalytic activities, can occur. In this work, the mechanisms underlying the ability of copper to inhibit 3'-nucleotidase from Leishmania amazonensis (La3'-nucleotidase) were investigated. To that end, La3'-nucleotidase activity was assayed with CuCl(2) in the presence of ascorbate or hydrogen peroxide to discriminate non-specific binding effects from pro-oxidant effects of copper. Copper inhibitory effects were greater at more acidic pH than at alkaline pH. The addition of enzyme substrate, adenosine 3'-monophosphate (3'AMP), prevented the inhibition of enzyme activity by copper. Thiol-containing compounds were able to protect the enzyme activity against inhibition due to copper. The specific copper chelating agent bathocuproine sulphonate (BCS) restored enzyme activity after pre-treatment of the enzyme with copper. La3'-nucleotidase activity was found to be resistant to ROS generated during oxidation reactions of ascorbate and hydrogen peroxide catalyzed by copper. Our results suggest that Cu(2+) ions exert their inhibitory effects by binding to specific motifs of the 3'-nucleotidase protein and that the enzyme appears to be extremely resistant to ROS.


Assuntos
Cobre/farmacologia , Leishmania mexicana/enzimologia , Nucleotidases/antagonistas & inibidores , Animais , Ácido Ascórbico/metabolismo , Cobre/metabolismo , Cricetinae , Cisteína/farmacologia , Ditiotreitol/farmacologia , Relação Dose-Resposta a Droga , Glutationa/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Leishmania mexicana/efeitos dos fármacos , Mercaptoetanol/farmacologia , Nucleotidases/metabolismo , Oxirredução , Oxigênio/metabolismo , Fenantrolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
3.
Exp Parasitol ; 129(3): 277-83, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21827749

RESUMO

Ecto-3'-nucleotidase/nuclease (3'NT/NU) is a membrane-bound enzyme that plays a key role in the nutrition of Leishmania sp. protozoan parasites. This enzyme generates nucleosides via hydrolyzes of 3'mononucleotides and nucleic acids, which enter the cell by specific transporters. In this work, we identify and characterize Leishmania amazonensis ecto-3'-nucleotidase activity (La3'-nucleotidase), report ammonium tetrathiomolybdate (TTM) as a novel La3'-nucleotidase inhibitor and approach the possible involvement of ecto-3'-nucleotidase in cellular adhesion. La3'-nucleotidase presented characteristics similar to those reported for the class I single-strand nuclease family; a molecular weight of approximately 40 kDa and optimum activity in an alkaline pH range were observed. Although it is conserved among the genus, La3'-nucleotidase displays different kinetic properties; it can be inhibited by vanadate, molybdate and Cu(2+) ions. Interestingly, ecto-3'-nucleotidase activity is 60-fold higher than that of ecto-5'-nucleotidase in L. amazonensis. Additionally, ecto-3'-nucleotidase activity is two-fold higher in virulent L. amazonensis cells than in avirulent ones. Notably, macrophage-parasite attachment/invasion was increased by 400% in the presence of adenosine 3'-monophosphate (3'AMP); however, this effect was reverted by TTM treatment. We believe that La3'-nucleotidase may play a significant role in the generation of adenosine, which may contribute to mammalian host immune response impairment and establishment of infection.


Assuntos
Leishmania mexicana/enzimologia , Leishmania mexicana/patogenicidade , Macrófagos Peritoneais/parasitologia , Nucleotidases/metabolismo , Monofosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Cricetinae , Feminino , Interações Hospedeiro-Parasita , Humanos , Concentração de Íons de Hidrogênio , Leishmania mexicana/classificação , Camundongos , Camundongos Endogâmicos BALB C , Nucleotidases/química , Nucleotidases/genética , Filogenia , Alinhamento de Sequência , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA